Abstract

Optical absorption and emission properties of gallium arsenide nanocrystals can be tuned across the visible spectrum by tuning their size. The surface of pure GaAs nanocrystals tends to oxidize, which deteriorates their optical properties. In order to prevent the oxidization, surface passivation has been previously demonstrated for GaAs nanocrystals larger than the Bohr exciton radius. In this paper, we study synthesis of small GaAs nanocrystals by pulsed laser ablation in liquids combined with simultaneous chemical surface passivation. The fabricated nanocrystals are smaller than the Bohr exciton radius and exhibit photoluminescence peaked near 530 nm due to quantum confinement. The photoluminescence properties are stable for at least six months, which is attributed to successful surface passivation. The chemical structure of the nanocrystals and changes caused by thermal annealing are elucidated with Raman spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Brus, “Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys.80(9), 4403–4409 (1984).
    [CrossRef]
  2. M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, “Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement,” J. Am. Chem. Soc.112(25), 9438–9439 (1990).
    [CrossRef]
  3. H. Uchida, C. J. Curtis, and A. J. Nozik, “Gallium arsenide nanocrystals prepared in quinoline,” J. Phys. Chem.95(14), 5382–5384 (1991).
    [CrossRef]
  4. S. S. Kher and R. L. Wells, “A straightforward, new method for the synthesis of nanocrystalline GaAs and GaP,” Chem. Mater.6(11), 2056–2062 (1994).
    [CrossRef]
  5. M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003).
    [CrossRef]
  6. M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
    [CrossRef]
  7. U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
    [CrossRef]
  8. J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
    [CrossRef]
  9. A. A. Lalayan, “Formation of colloidal GaAs and CdS quantum dots by laser ablation in liquid media,” Appl. Surf. Sci.248(1-4), 209–212 (2005).
    [CrossRef]
  10. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
    [CrossRef]
  11. M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008).
    [CrossRef] [PubMed]
  12. Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988).
    [CrossRef]
  13. T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
    [CrossRef]
  14. A. K. Arora, M. Rajalakshmi, and T. R. Ravindran, “Phonon confinement in nanostructured materials,” in Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa, ed. (American Scientific Publishers, Los Angeles, 2004), Vol. 8, pp.409–512.
  15. G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
    [CrossRef]
  16. I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
    [CrossRef]
  17. G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
    [CrossRef]
  18. Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
    [CrossRef]
  19. I. H. Campbell and P. M. Fauchet, “CW laser irradiation of GaAs: Arsenic formation and photoluminescence degradation,” Appl. Phys. Lett.57(1), 10–12 (1990).
    [CrossRef]
  20. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981).
    [CrossRef]
  21. A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007).
    [CrossRef]
  22. D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” J. Phys. Condens. Matter2(6), 1457–1474 (1990).
    [CrossRef]
  23. R. K. Chang, J. M. Ralston, and D. E. Keating, in Light Scattering Spectra of Solids, G. B. Wright, ed. (Springer–Verlag, New York, 1969), p. 369.
  24. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986).
    [CrossRef]
  25. J. Zi, K. Zhang, and X. Xie, “Comparison of models for Raman spectra of Si nanocrystals,” Phys. Rev. B55(15), 9263–9266 (1997).
    [CrossRef]
  26. E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000).
    [CrossRef]
  27. G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989).
    [CrossRef] [PubMed]
  28. G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci.52(4), 648–698 (2007).
    [CrossRef]
  29. T. Fanaei and C. Aktik, “Passivation of GaAs using P2S5/(NH4)2S+Se and (NH4)2S+Se,” J. Vac. Sci. Technol. A22, 874–878 (2004).
  30. D. Peide, “Main determinants for III–V metal-oxide-semiconductor field-effect transistors,” J. Vac. Sci. Technol. A26, 697–704 (2007).
  31. J. G. Díaz and G. W. Bryant, “Electronic and optical fine structure of GaAs nanocrystals: The role of d orbitals in a tight-binding approach,” Phys. Rev. B73(7), 075329 (2006).
    [CrossRef]
  32. J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998).
    [CrossRef]
  33. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys.53(10), R123–R181 (1982).
    [CrossRef]
  34. G. E. Fenner, “Effect of hydrostatic pressure on the emission from gallium arsenide lasers,” J. Appl. Phys.34(10), 2955–2957 (1963).
    [CrossRef]
  35. U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992).
    [CrossRef] [PubMed]
  36. C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
    [CrossRef]
  37. V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
    [CrossRef]
  38. J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011).
    [CrossRef]
  39. D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999).
    [CrossRef]
  40. N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
    [CrossRef]
  41. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
    [CrossRef] [PubMed]
  42. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
    [CrossRef]
  43. Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express13(6), 1833–1838 (2005).
    [CrossRef] [PubMed]
  44. C. Wetzel and T. Detchprohm, “Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency,” Opt. Express19(S4Suppl 4), A962–A971 (2011).
    [CrossRef] [PubMed]
  45. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
    [CrossRef]
  46. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  47. J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
    [CrossRef] [PubMed]
  48. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
    [CrossRef]

2012 (1)

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

2011 (3)

2010 (2)

T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
[CrossRef]

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

2009 (1)

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

2008 (1)

M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008).
[CrossRef] [PubMed]

2007 (5)

D. Peide, “Main determinants for III–V metal-oxide-semiconductor field-effect transistors,” J. Vac. Sci. Technol. A26, 697–704 (2007).

A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007).
[CrossRef]

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci.52(4), 648–698 (2007).
[CrossRef]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

2006 (1)

J. G. Díaz and G. W. Bryant, “Electronic and optical fine structure of GaAs nanocrystals: The role of d orbitals in a tight-binding approach,” Phys. Rev. B73(7), 075329 (2006).
[CrossRef]

2005 (3)

A. A. Lalayan, “Formation of colloidal GaAs and CdS quantum dots by laser ablation in liquid media,” Appl. Surf. Sci.248(1-4), 209–212 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
[CrossRef]

Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express13(6), 1833–1838 (2005).
[CrossRef] [PubMed]

2004 (3)

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
[CrossRef] [PubMed]

M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
[CrossRef]

T. Fanaei and C. Aktik, “Passivation of GaAs using P2S5/(NH4)2S+Se and (NH4)2S+Se,” J. Vac. Sci. Technol. A22, 874–878 (2004).

2003 (2)

Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
[CrossRef]

M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003).
[CrossRef]

2001 (1)

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
[CrossRef]

2000 (1)

E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000).
[CrossRef]

1999 (2)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999).
[CrossRef]

1998 (2)

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998).
[CrossRef]

1997 (1)

J. Zi, K. Zhang, and X. Xie, “Comparison of models for Raman spectra of Si nanocrystals,” Phys. Rev. B55(15), 9263–9266 (1997).
[CrossRef]

1994 (2)

S. S. Kher and R. L. Wells, “A straightforward, new method for the synthesis of nanocrystalline GaAs and GaP,” Chem. Mater.6(11), 2056–2062 (1994).
[CrossRef]

I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
[CrossRef]

1992 (2)

U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
[CrossRef]

U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992).
[CrossRef] [PubMed]

1991 (1)

H. Uchida, C. J. Curtis, and A. J. Nozik, “Gallium arsenide nanocrystals prepared in quinoline,” J. Phys. Chem.95(14), 5382–5384 (1991).
[CrossRef]

1990 (3)

M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, “Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement,” J. Am. Chem. Soc.112(25), 9438–9439 (1990).
[CrossRef]

I. H. Campbell and P. M. Fauchet, “CW laser irradiation of GaAs: Arsenic formation and photoluminescence degradation,” Appl. Phys. Lett.57(1), 10–12 (1990).
[CrossRef]

D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” J. Phys. Condens. Matter2(6), 1457–1474 (1990).
[CrossRef]

1989 (1)

G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989).
[CrossRef] [PubMed]

1988 (1)

Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988).
[CrossRef]

1987 (1)

G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
[CrossRef]

1986 (1)

H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986).
[CrossRef]

1984 (1)

L. E. Brus, “Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys.80(9), 4403–4409 (1984).
[CrossRef]

1982 (1)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys.53(10), R123–R181 (1982).
[CrossRef]

1981 (1)

H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981).
[CrossRef]

1979 (1)

G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
[CrossRef]

1963 (1)

G. E. Fenner, “Effect of hydrostatic pressure on the emission from gallium arsenide lasers,” J. Appl. Phys.34(10), 2955–2957 (1963).
[CrossRef]

Afzaal, M.

M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
[CrossRef]

Aguirre-Tostado, F. S.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Aktik, C.

T. Fanaei and C. Aktik, “Passivation of GaAs using P2S5/(NH4)2S+Se and (NH4)2S+Se,” J. Vac. Sci. Technol. A22, 874–878 (2004).

Alivisatos, A. P.

M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, “Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement,” J. Am. Chem. Soc.112(25), 9438–9439 (1990).
[CrossRef]

Andreazza, C.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
[CrossRef]

Arola, E.

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Arora, A. K.

A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007).
[CrossRef]

Baba, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
[CrossRef]

Bangert, U.

M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
[CrossRef]

Bassani, F.

J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998).
[CrossRef]

Beltram, F.

J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998).
[CrossRef]

Berezovska, N.

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

Biteen, J. S.

M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008).
[CrossRef] [PubMed]

Blakemore, J. S.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys.53(10), R123–R181 (1982).
[CrossRef]

Bostick, B. C.

E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000).
[CrossRef]

Brennan, B.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Brunschwig, B. S.

M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008).
[CrossRef] [PubMed]

Brus, L. E.

L. E. Brus, “Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys.80(9), 4403–4409 (1984).
[CrossRef]

Bryant, G. W.

J. G. Díaz and G. W. Bryant, “Electronic and optical fine structure of GaAs nanocrystals: The role of d orbitals in a tight-binding approach,” Phys. Rev. B73(7), 075329 (2006).
[CrossRef]

Burns, G.

G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
[CrossRef]

Burstein, E.

G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
[CrossRef]

Campbell, H.

H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986).
[CrossRef]

Campbell, I. H.

I. H. Campbell and P. M. Fauchet, “CW laser irradiation of GaAs: Arsenic formation and photoluminescence degradation,” Appl. Phys. Lett.57(1), 10–12 (1990).
[CrossRef]

Cardona, M.

G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
[CrossRef]

Chamarro, M.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
[CrossRef]

Chambers, F. A.

U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992).
[CrossRef] [PubMed]

Chan, W. C. W.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Cingolani, A.

G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989).
[CrossRef] [PubMed]

Coltrin, M. E.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Crawford, M. H.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Cui, L. J.

U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992).
[CrossRef] [PubMed]

Curtis, C. J.

U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
[CrossRef]

H. Uchida, C. J. Curtis, and A. J. Nozik, “Gallium arsenide nanocrystals prepared in quinoline,” J. Phys. Chem.95(14), 5382–5384 (1991).
[CrossRef]

Dacol, F. H.

G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
[CrossRef]

Dahl, J.

J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011).
[CrossRef]

Däweritz, L.

Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
[CrossRef]

DenBaars, S. P.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Desnica, I. D.

I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
[CrossRef]

Detchprohm, T.

Díaz, J. G.

J. G. Díaz and G. W. Bryant, “Electronic and optical fine structure of GaAs nanocrystals: The role of d orbitals in a tight-binding approach,” Phys. Rev. B73(7), 075329 (2006).
[CrossRef]

Dierolf, V.

DiStefano, D.

G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
[CrossRef]

Dmitruk, I.

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

Dmitruk, N.

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

Dorner, B.

D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” J. Phys. Condens. Matter2(6), 1457–1474 (1990).
[CrossRef]

Fan, J.

Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988).
[CrossRef]

Fanaei, T.

T. Fanaei and C. Aktik, “Passivation of GaAs using P2S5/(NH4)2S+Se and (NH4)2S+Se,” J. Vac. Sci. Technol. A22, 874–878 (2004).

Farrell, R. M.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Fauchet, P. M.

I. H. Campbell and P. M. Fauchet, “CW laser irradiation of GaAs: Arsenic formation and photoluminescence degradation,” Appl. Phys. Lett.57(1), 10–12 (1990).
[CrossRef]

H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986).
[CrossRef]

Fendorf, S.

E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000).
[CrossRef]

Fenner, G. E.

G. E. Fenner, “Effect of hydrostatic pressure on the emission from gallium arsenide lasers,” J. Appl. Phys.34(10), 2955–2957 (1963).
[CrossRef]

Fischer, A. J.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Fraser, J. W.

D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
[CrossRef]

Goldstein, A. N.

M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, “Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement,” J. Am. Chem. Soc.112(25), 9438–9439 (1990).
[CrossRef]

Gong, Q.

Griffiths, J. E.

G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
[CrossRef]

Gualtieri, G. J.

G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
[CrossRef]

Guina, M.

J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011).
[CrossRef]

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Hahtala, M.

T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
[CrossRef]

Hamilton, B.

M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
[CrossRef]

Hinkle, C. L.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Hughes, G. J.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Ivanda, M.

I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
[CrossRef]

Jancu, J. J.

J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998).
[CrossRef]

Jones, K. M.

U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
[CrossRef]

Kabashin, A. V.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
[CrossRef] [PubMed]

Kamat, P. V.

U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
[CrossRef]

Kher, S. S.

S. S. Kher and R. L. Wells, “A straightforward, new method for the synthesis of nanocrystalline GaAs and GaP,” Chem. Mater.6(11), 2056–2062 (1994).
[CrossRef]

Koda, S.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

Koma, A.

Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988).
[CrossRef]

Krames, M. R.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Kranjcek, M.

I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
[CrossRef]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

Kuroda, H.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
[CrossRef]

Kutovyi, S.

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

Labbé, H. J.

D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999).
[CrossRef]

Lalayan, A. A.

A. A. Lalayan, “Formation of colloidal GaAs and CdS quantum dots by laser ablation in liquid media,” Appl. Surf. Sci.248(1-4), 209–212 (2005).
[CrossRef]

Lång, J.

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Laukkanen, P.

J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011).
[CrossRef]

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
[CrossRef]

Lévy, F.

G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989).
[CrossRef] [PubMed]

Lewis, N. S.

M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008).
[CrossRef] [PubMed]

Ley, L.

H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981).
[CrossRef]

Li, G.

E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000).
[CrossRef]

Li, Q.

Liu, C.

Liu, G.

Liu, Z.

Lockwood, D. J.

D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999).
[CrossRef]

Lugarà, M.

G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989).
[CrossRef] [PubMed]

Luong, J. H. T.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
[CrossRef] [PubMed]

Malik, M. A.

M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
[CrossRef]

M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003).
[CrossRef]

Meunier, M.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
[CrossRef] [PubMed]

Millon, E.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
[CrossRef]

Milojevic, M.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Morcrette, M.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
[CrossRef]

Mueller, G. O.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Mueller-Mach, R.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Murri, R.

I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
[CrossRef]

Nannichi, Y.

Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988).
[CrossRef]

Nie, S.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Niemi, T.

T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
[CrossRef]

Norager, S.

M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003).
[CrossRef]

Nozik, A. J.

U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
[CrossRef]

H. Uchida, C. J. Curtis, and A. J. Nozik, “Gallium arsenide nanocrystals prepared in quinoline,” J. Phys. Chem.95(14), 5382–5384 (1991).
[CrossRef]

O’Brien, P.

M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
[CrossRef]

M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003).
[CrossRef]

Ohno, Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Oigawa, H.

Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988).
[CrossRef]

Olshavsky, M. A.

M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, “Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement,” J. Am. Chem. Soc.112(25), 9438–9439 (1990).
[CrossRef]

Pakarinen, J.

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Peide, D.

D. Peide, “Main determinants for III–V metal-oxide-semiconductor field-effect transistors,” J. Vac. Sci. Technol. A26, 697–704 (2007).

Perrière, J.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
[CrossRef]

Phillips, J. M.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Pinto, N.

I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
[CrossRef]

Ploog, K. H.

Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
[CrossRef]

Polojärvi, V.

J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011).
[CrossRef]

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Poplawsky, J. D.

Rajalakshmi, M.

A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007).
[CrossRef]

Ramsteiner, M.

Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
[CrossRef]

Ravindran, T. R.

A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007).
[CrossRef]

Richter, H.

H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981).
[CrossRef]

Rochette, E. A.

E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000).
[CrossRef]

Rohwer, L. E. S.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
[CrossRef]

Sabataityte, J.

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

Sacher, E.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
[CrossRef] [PubMed]

Salmi, J.

J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011).
[CrossRef]

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Salminen, T.

T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
[CrossRef]

Scamarcio, G.

G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989).
[CrossRef] [PubMed]

Schmuki, P.

D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999).
[CrossRef]

Scholz, R.

J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998).
[CrossRef]

Schramm, A.

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Schwartz, B.

G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
[CrossRef]

Schwartz, G. P.

G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
[CrossRef]

Seppälä, I.

T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
[CrossRef]

Simkiene, I.

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

Simmons, J. A.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Sivasubramanian, V.

A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007).
[CrossRef]

Smith, J.

M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003).
[CrossRef]

Sonnet, A. M.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Speck, J. S.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Strauch, D.

D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” J. Phys. Condens. Matter2(6), 1457–1474 (1990).
[CrossRef]

Suzuki, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
[CrossRef]

Sylvestre, J.-P.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
[CrossRef] [PubMed]

Takagaki, Y.

Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
[CrossRef]

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

Tansu, N.

Traub, M. C.

M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008).
[CrossRef] [PubMed]

Tsao, J. Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Tukiainen, A.

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Uchida, H.

H. Uchida, C. J. Curtis, and A. J. Nozik, “Gallium arsenide nanocrystals prepared in quinoline,” J. Phys. Chem.95(14), 5382–5384 (1991).
[CrossRef]

Uchida, U.

U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
[CrossRef]

Väyrynen, I. J.

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

Venkateswaran, U. D.

U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992).
[CrossRef] [PubMed]

Vogel, E. M.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Wallace, R. M.

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

Wang, Z. P.

H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981).
[CrossRef]

Weinstein, B. A.

U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992).
[CrossRef] [PubMed]

Wells, R. L.

S. S. Kher and R. L. Wells, “A straightforward, new method for the synthesis of nanocrystalline GaAs and GaP,” Chem. Mater.6(11), 2056–2062 (1994).
[CrossRef]

Wetzel, C.

Wie, C. R.

G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
[CrossRef]

Wiebicke, E.

Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
[CrossRef]

Wu, F.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Xie, X.

J. Zi, K. Zhang, and X. Xie, “Comparison of models for Raman spectra of Si nanocrystals,” Phys. Rev. B55(15), 9263–9266 (1997).
[CrossRef]

Yang, G. W.

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci.52(4), 648–698 (2007).
[CrossRef]

Young, E. C.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Zhang, J.

Zhang, K.

J. Zi, K. Zhang, and X. Xie, “Comparison of models for Raman spectra of Si nanocrystals,” Phys. Rev. B55(15), 9263–9266 (1997).
[CrossRef]

Zhao, H.

Zi, J.

J. Zi, K. Zhang, and X. Xie, “Comparison of models for Raman spectra of Si nanocrystals,” Phys. Rev. B55(15), 9263–9266 (1997).
[CrossRef]

Appl. Phys. B (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions,” Appl. Phys. B80(4-5), 595–601 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

G. P. Schwartz, B. Schwartz, D. DiStefano, G. J. Gualtieri, and J. E. Griffiths, “Raman scattering from anodic oxide‐GaAs interfaces,” Appl. Phys. Lett.34(3), 205–207 (1979).
[CrossRef]

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett.78(19), 2949–2951 (2001).
[CrossRef]

I. H. Campbell and P. M. Fauchet, “CW laser irradiation of GaAs: Arsenic formation and photoluminescence degradation,” Appl. Phys. Lett.57(1), 10–12 (1990).
[CrossRef]

C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett.94(16), 162101 (2009).
[CrossRef]

V. Polojärvi, J. Salmi, A. Schramm, A. Tukiainen, M. Guina, J. Pakarinen, E. Arola, J. Lång, I. J. Väyrynen, and P. Laukkanen, “Effects of (NH4)2S and NH4OH surface treatments prior to SiO2 capping and thermal annealing on 1.3 μm GaInAsN/GaAs quantum well structures,” Appl. Phys. Lett.97(11), 111109 (2010).
[CrossRef]

J. Dahl, V. Polojärvi, J. Salmi, P. Laukkanen, and M. Guina, “Properties of the SiO2- and SiNx-capped GaAs(100) surfaces of GaInAsN/GaAs quantum-well heterostructures studied by photoelectron spectroscopy and photoluminescence,” Appl. Phys. Lett.99(10), 102105 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Däweritz, and K. H. Ploog, “Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces,” Appl. Phys., A Mater. Sci. Process.76(5), 837–840 (2003).
[CrossRef]

T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, and T. Niemi, “Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates,” Appl. Phys., A Mater. Sci. Process.101(4), 735–738 (2010).
[CrossRef]

Appl. Surf. Sci. (1)

A. A. Lalayan, “Formation of colloidal GaAs and CdS quantum dots by laser ablation in liquid media,” Appl. Surf. Sci.248(1-4), 209–212 (2005).
[CrossRef]

Chem. Mater. (1)

S. S. Kher and R. L. Wells, “A straightforward, new method for the synthesis of nanocrystalline GaAs and GaP,” Chem. Mater.6(11), 2056–2062 (1994).
[CrossRef]

Environ. Sci. Technol. (1)

E. A. Rochette, B. C. Bostick, G. Li, and S. Fendorf, “Kinetics of arsenate reduction by dissolved sulfide,” Environ. Sci. Technol.34(22), 4714–4720 (2000).
[CrossRef]

J. Am. Chem. Soc. (3)

M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, “Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement,” J. Am. Chem. Soc.112(25), 9438–9439 (1990).
[CrossRef]

M. C. Traub, J. S. Biteen, B. S. Brunschwig, and N. S. Lewis, “Passivation of GaAs nanocrystals by chemical functionalization,” J. Am. Chem. Soc.130(3), 955–964 (2008).
[CrossRef] [PubMed]

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins,” J. Am. Chem. Soc.126(23), 7176–7177 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys.53(10), R123–R181 (1982).
[CrossRef]

G. E. Fenner, “Effect of hydrostatic pressure on the emission from gallium arsenide lasers,” J. Appl. Phys.34(10), 2955–2957 (1963).
[CrossRef]

J. Chem. Phys. (1)

L. E. Brus, “Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys.80(9), 4403–4409 (1984).
[CrossRef]

J. Mater. Chem. (1)

M. A. Malik, P. O’Brien, S. Norager, and J. Smith, “Gallium arsenide nanoparticles: synthesis and characterisation,” J. Mater. Chem.13(10), 2591–2595 (2003).
[CrossRef]

J. Non-Cryst. Solids (1)

I. D. Desnica, M. Ivanda, M. Kranjček, R. Murri, and N. Pinto, “Raman study of gallium arsenide thin films,” J. Non-Cryst. Solids170(3), 263–269 (1994).
[CrossRef]

J. Phys. Chem. (2)

H. Uchida, C. J. Curtis, and A. J. Nozik, “Gallium arsenide nanocrystals prepared in quinoline,” J. Phys. Chem.95(14), 5382–5384 (1991).
[CrossRef]

U. Uchida, C. J. Curtis, P. V. Kamat, K. M. Jones, and A. J. Nozik, “Optical properties of gallium arsenide nanocrystals,” J. Phys. Chem.96(3), 1156–1160 (1992).
[CrossRef]

J. Phys. Chem. B (1)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

J. Phys. Condens. Matter (1)

D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” J. Phys. Condens. Matter2(6), 1457–1474 (1990).
[CrossRef]

J. Raman Spectrosc. (1)

A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” J. Raman Spectrosc.38(6), 604–617 (2007).
[CrossRef]

J. Vac. Sci. Technol. A (2)

T. Fanaei and C. Aktik, “Passivation of GaAs using P2S5/(NH4)2S+Se and (NH4)2S+Se,” J. Vac. Sci. Technol. A22, 874–878 (2004).

D. Peide, “Main determinants for III–V metal-oxide-semiconductor field-effect transistors,” J. Vac. Sci. Technol. A26, 697–704 (2007).

Jpn. J. Appl. Phys. (1)

Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys.27(Part 2, No. 12), L2367–L2369 (1988).
[CrossRef]

Laser Photonics Rev. (1)

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Mater. Sci. Technol. (1)

M. A. Malik, M. Afzaal, P. O’Brien, U. Bangert, and B. Hamilton, “Single molecular precursor for synthesis of GaAs nanoparticles,” Mater. Sci. Technol.20(8), 959–963 (2004).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (3)

J. Zi, K. Zhang, and X. Xie, “Comparison of models for Raman spectra of Si nanocrystals,” Phys. Rev. B55(15), 9263–9266 (1997).
[CrossRef]

J. G. Díaz and G. W. Bryant, “Electronic and optical fine structure of GaAs nanocrystals: The role of d orbitals in a tight-binding approach,” Phys. Rev. B73(7), 075329 (2006).
[CrossRef]

J. J. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B57(11), 6493–6507 (1998).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

G. Scamarcio, A. Cingolani, M. Lugarà, and F. Lévy, “Resonant Raman effects at the indirect band gaps of GaS,” Phys. Rev. B Condens. Matter40(3), 1783–1789 (1989).
[CrossRef] [PubMed]

U. D. Venkateswaran, L. J. Cui, B. A. Weinstein, and F. A. Chambers, “Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers,” Phys. Rev. B Condens. Matter45(16), 9237–9247 (1992).
[CrossRef] [PubMed]

Physica E (1)

D. J. Lockwood, P. Schmuki, H. J. Labbé, and J. W. Fraser, “Optical properties of porous GaAs,” Physica E4(2), 102–110 (1999).
[CrossRef]

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci.52(4), 648–698 (2007).
[CrossRef]

Science (1)

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Sens. Actuators B Chem. (1)

N. Dmitruk, S. Kutovyi, I. Dmitruk, I. Simkiene, J. Sabataityte, and N. Berezovska, “Morphology, Raman scattering and photoluminescence of porous GaAs layers,” Sens. Actuators B Chem.126(1), 294–300 (2007).
[CrossRef]

Solid State Commun. (3)

H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986).
[CrossRef]

H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981).
[CrossRef]

G. Burns, F. H. Dacol, C. R. Wie, E. Burstein, and M. Cardona, “Phonon shifts in ion bombarded GaAs: Raman measurements,” Solid State Commun.62(7), 449–454 (1987).
[CrossRef]

Other (2)

A. K. Arora, M. Rajalakshmi, and T. R. Ravindran, “Phonon confinement in nanostructured materials,” in Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa, ed. (American Scientific Publishers, Los Angeles, 2004), Vol. 8, pp.409–512.

R. K. Chang, J. M. Ralston, and D. E. Keating, in Light Scattering Spectra of Solids, G. B. Wright, ed. (Springer–Verlag, New York, 1969), p. 369.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

HRTEM image of a large cluster of nanocrystals. The individual primary nanocrystals can be observed as separate crystalline regions within the cluster. The typical crystallite size is from 3 to 6nm. The EDS analysis was performed from regions A and B.

Fig. 2
Fig. 2

Raman spectrum of GaAs nanocrystals prepared in ethanol. The fitted spectra is dominated by Gaussian peaks related to amorphous GaAs and amorphous arsenic. The black line is the measured spectrum, the red dotted line is the overall fit and the green dashed lines represent the individual components; from left to right: amorphous As, amorphous GaAs, and crystalline GaAs TO and LO phonon modes.

Fig. 3
Fig. 3

Raman spectrum of a GaAs sample that was prepared in ethanol after thermal annealing. The black line is the measured spectrum; the dotted red line is the overall fit. The blue dashed lines are the TO and LO phonons of crystalline GaAs fitted with the Gaussian confinement model. The green lines represent the individual amorphous components: amorphous As (205 cm−1 and 252 cm−1) and amorphous GaAs (245 cm−1). The size of the nanocrystals obtained from the fit is 4.0 nm.

Fig. 4
Fig. 4

Raman spectrum of the samples prepared in the ammonium sulfide solution. In addition to the peaks of crystalline GaAs, a Raman signal from arsenic sulfides is observed.

Fig. 5
Fig. 5

As 2p photoemissions from the nanocrystal samples prepared with ammonium sulfide. The origins of different photoemission components are proposed.

Fig. 6
Fig. 6

Ga 2p photoemissions from the nanocrystal samples prepared with ammonium sulfide. The origins of different photoemission components are proposed.

Fig. 7
Fig. 7

Photoluminescence of the samples under 355 nm excitation. (A) As-deposited samples. (B) Samples after thermal annealing for 120 s at 375 °C. Luminescence spectrum of the unannealed sample prepared in the 1mmol/l (NH4)2S solution is included as a reference.

Fig. 8
Fig. 8

Temperature dependent photoluminescence measurements excited with laser at wavelength of 532 nm. The samples produced in ethanol did not produce measurable luminescence before the RTA treatment. The values on the y-axis are included as a scale reference and are not directly comparable between different graphs.

Tables (1)

Tables Icon

Table 1 EDS Analysis of the Nanoparticle Cluster Shown in Fig. 1

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I P L ( T ) = I 0 1 + i = 1 n C i exp ( E A , i k B T ) ,

Metrics