Abstract

In this work, stable blue-green luminescent colloidal silicon nanocrystals (SiNCs) are fabricated by nanosecond pulsed laser ablation of a silicon target in dimethyl sulfoxide (DMSO). Transmission electron microscopy and X-ray diffraction analysis have shown the formation of spherical silicon nanocrystals in the colloid with size range of 2-5 nm. Our results show that the DMSO stabilizes the silicon nanocrystals via oxide formations on the nanocrytals surfaces by a simple route of laser ablation and a schematic representation of the process is suggested. The colloid exhibits strong blue luminescent emissions in the spectral range of 455-465 nm when excited at wavelengths near the direct band gap of the silicon nanocrystal. The luminescent emission band shifts to longer wavelengths (green light) if the excitation wavelength increases toward the indirect band gap of the SiNCs. The oxidized SiNCs with quantum confinement effects are shown to be responsible for visible photoluminescence of the colloid. The observed blue-green emission of the colloid makes it a good candidate for display, solid-state lighting and biological luminescent based devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  2. K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011).
    [CrossRef] [PubMed]
  3. D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
    [CrossRef] [PubMed]
  4. F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
    [CrossRef] [PubMed]
  5. V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
    [CrossRef]
  6. N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
    [CrossRef] [PubMed]
  7. R. Karimzadeh, J. Z. Anvari, and N. Mansour, “Nanosecond pulsed laser ablation of silicon in liquids,” Appl. Phys., A Mater. Sci. Process.94(4), 949–955 (2009).
    [CrossRef]
  8. K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
    [CrossRef]
  9. V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006).
    [CrossRef]
  10. D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
    [CrossRef] [PubMed]
  11. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
    [CrossRef]
  12. Z. F. Li and E. Ruckenstein, “Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett.4(8), 1463–1467 (2004).
    [CrossRef]
  13. M. J. Sailor and E. J. Lee, “Surface chemistry of luminescent silicon nanocrystallites,” Adv. Mater.9(10), 783–793 (1997).
    [CrossRef]
  14. M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
    [CrossRef] [PubMed]
  15. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
    [CrossRef]
  16. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
    [CrossRef]
  17. E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
    [CrossRef]
  18. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
    [CrossRef]
  19. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
    [CrossRef]
  20. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  21. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
    [CrossRef]
  22. C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
    [CrossRef]
  23. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
    [CrossRef]
  24. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, 2001).
  25. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
    [CrossRef]
  26. S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008).
    [CrossRef]
  27. X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010).
    [CrossRef] [PubMed]
  28. J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000).
    [CrossRef]
  29. P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” J. Pharm. Sci.84(4), 387–392 (1995).
    [CrossRef] [PubMed]
  30. S. W. Lin and D. H. Chen, “Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation,” Small5(1), 72–76 (2009).
    [CrossRef] [PubMed]
  31. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
    [CrossRef]
  32. X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
    [CrossRef]
  33. X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003).
    [CrossRef]
  34. S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
    [CrossRef]
  35. J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
    [CrossRef] [PubMed]
  36. P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys.83(7), 3789–3794 (1998).
    [CrossRef]

2012 (1)

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

2011 (14)

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
[CrossRef]

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011).
[CrossRef] [PubMed]

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
[CrossRef]

2010 (1)

X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010).
[CrossRef] [PubMed]

2009 (4)

S. W. Lin and D. H. Chen, “Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation,” Small5(1), 72–76 (2009).
[CrossRef] [PubMed]

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

R. Karimzadeh, J. Z. Anvari, and N. Mansour, “Nanosecond pulsed laser ablation of silicon in liquids,” Appl. Phys., A Mater. Sci. Process.94(4), 949–955 (2009).
[CrossRef]

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

2008 (2)

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008).
[CrossRef]

2006 (1)

V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006).
[CrossRef]

2004 (1)

Z. F. Li and E. Ruckenstein, “Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett.4(8), 1463–1467 (2004).
[CrossRef]

2003 (2)

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003).
[CrossRef]

2001 (1)

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

2000 (3)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000).
[CrossRef]

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

1999 (2)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

1998 (1)

P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys.83(7), 3789–3794 (1998).
[CrossRef]

1997 (1)

M. J. Sailor and E. J. Lee, “Surface chemistry of luminescent silicon nanocrystallites,” Adv. Mater.9(10), 783–793 (1997).
[CrossRef]

1995 (1)

P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” J. Pharm. Sci.84(4), 387–392 (1995).
[CrossRef] [PubMed]

Abarques, R.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Abderrafi, K.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Allen, H. C.

X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010).
[CrossRef] [PubMed]

Alsharif, N. H.

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

Anthony, R.

K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011).
[CrossRef] [PubMed]

Anvari, J. Z.

R. Karimzadeh, J. Z. Anvari, and N. Mansour, “Nanosecond pulsed laser ablation of silicon in liquids,” Appl. Phys., A Mater. Sci. Process.94(4), 949–955 (2009).
[CrossRef]

Bellissent-Funel, M. C.

J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000).
[CrossRef]

Berger, C. E. M.

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

Biser, J. M.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Cabral, J. T.

J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000).
[CrossRef]

Cai, W.

S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
[CrossRef]

Cao, B.

S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
[CrossRef]

Cao, W.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Caughey, W. S.

P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” J. Pharm. Sci.84(4), 387–392 (1995).
[CrossRef] [PubMed]

Chan, H. M.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Chao, Y.

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

Chen, D. H.

S. W. Lin and D. H. Chen, “Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation,” Small5(1), 72–76 (2009).
[CrossRef] [PubMed]

Chen, S.

S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008).
[CrossRef]

Chen, W.

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

Chen, X.

X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010).
[CrossRef] [PubMed]

Chen, X. Y.

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

Cheng, K. Y.

K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011).
[CrossRef] [PubMed]

Chirvony, V. S.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Cho, B. J.

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

Choi, Y. S.

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

Dai, D. Y.

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

Dai, Y.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Datta, H. K.

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

DenBaars, S. P.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Detchprohm, T.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Dierolf, V.

Dong, A.

P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” J. Pharm. Sci.84(4), 387–392 (1995).
[CrossRef] [PubMed]

Doty, R. C.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Ee, Y.-K.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Erogbogbo, F.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

Farrell, R. M.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Fauchet, P. M.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

García Calzada, R.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Gilchrist, J. F.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Giorgio, S.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

Gongalsky, M. B.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

He, M.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

He, Y.

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003).
[CrossRef]

Helander, M. G.

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

Henderson, E. J.

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

Holmes, J. D.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Holmes, R. J.

K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011).
[CrossRef] [PubMed]

Horrocks, B. R.

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

Hossu, M.

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

Hou, W.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Hu, E. L.

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

Huang, P.

P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” J. Pharm. Sci.84(4), 387–392 (1995).
[CrossRef] [PubMed]

Ibáñez, R.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Jin, Z.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Johnston, K. P.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Joly, A. G.

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Jungwirth, P.

X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010).
[CrossRef] [PubMed]

Karimzadeh, R.

R. Karimzadeh, J. Z. Anvari, and N. Mansour, “Nanosecond pulsed laser ablation of silicon in liquids,” Appl. Phys., A Mater. Sci. Process.94(4), 949–955 (2009).
[CrossRef]

Kauzlarich, S. M.

S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008).
[CrossRef]

Kenyon, A. J.

P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys.83(7), 3789–3794 (1998).
[CrossRef]

Kondo, M.

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

Korgel, B. A.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Kortshagen, U. R.

K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011).
[CrossRef] [PubMed]

Koshizaki, N.

V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006).
[CrossRef]

Kumnorkaew, P.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Lai, Y. L.

C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
[CrossRef]

Lan, C. C.

C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
[CrossRef]

Lee, E. J.

M. J. Sailor and E. J. Lee, “Surface chemistry of luminescent silicon nanocrystallites,” Adv. Mater.9(10), 783–793 (1997).
[CrossRef]

Li, W.

S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
[CrossRef]

Li, X.

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003).
[CrossRef]

Li, X.-H.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Li, Y.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

Li, Y. L.

C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
[CrossRef]

Li, Z. F.

Z. F. Li and E. Ruckenstein, “Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett.4(8), 1463–1467 (2004).
[CrossRef]

Lin, S. W.

S. W. Lin and D. H. Chen, “Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation,” Small5(1), 72–76 (2009).
[CrossRef] [PubMed]

Liu, C. P.

C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
[CrossRef]

Liu, G.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

Liu, M. H.

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

Liu, Z.

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

Lu, C. H.

C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
[CrossRef]

Lu, Y. F.

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

Lu, Z.

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

Luzar, A.

J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000).
[CrossRef]

Ma, G.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Ma, Z.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Mansour, N.

R. Karimzadeh, J. Z. Anvari, and N. Mansour, “Nanosecond pulsed laser ablation of silicon in liquids,” Appl. Phys., A Mater. Sci. Process.94(4), 949–955 (2009).
[CrossRef]

Marine, W.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

Mariotti, D.

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

Martínez-Pastor, J. P.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Matioli, E.

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Minofar, B.

X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010).
[CrossRef] [PubMed]

Nagai, T.

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

Nelson, D.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

Ozin, G. A.

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

Patrone, L.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pell, L. E.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Pitt, C. W.

P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys.83(7), 3789–3794 (1998).
[CrossRef]

Poplawsky, J. D.

Pradhan, S.

S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008).
[CrossRef]

Prasad, P. N.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Provencio, P. N.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Puzzo, D. P.

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

Qiu, J.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Rangel, E.

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

Roy, I.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

Ruckenstein, E.

Z. F. Li and E. Ruckenstein, “Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett.4(8), 1463–1467 (2004).
[CrossRef]

Safarov, V. I.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

Sailor, M. J.

M. J. Sailor and E. J. Lee, “Surface chemistry of luminescent silicon nanocrystallites,” Adv. Mater.9(10), 783–793 (1997).
[CrossRef]

Samara, G. A.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Sasaki, T.

V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006).
[CrossRef]

Sentis, M.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

Shibata, Y.

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

Shimizu, Y.

V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006).
[CrossRef]

Song, R.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Song, W. D.

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

Speck, J. S.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

Suárez, I.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Švrcek, V.

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006).
[CrossRef]

Swihart, M. T.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003).
[CrossRef]

Talukdar, S. S.

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003).
[CrossRef]

Tamura, N.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Tan, D.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Tanaka, S.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Taniguchi, Y.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Tansu, N.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Teixeira, J.

J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000).
[CrossRef]

Timoshenko, V. Y.

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

Trwoga, P. F.

P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys.83(7), 3789–3794 (1998).
[CrossRef]

Turkevych, I.

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

Varanasi, S. S.

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

Vinci, R. P.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Wang, Z. B.

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

Weisbuch, C.

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

Wetzel, C.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Wilcoxon, J. P.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Wu, F.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Wu, Y. H.

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

Xu, B.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Xu, G. X.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

Yang, S.

S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
[CrossRef]

Yao, M.

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

Yong, K. T.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

You, S.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Young, E. C.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Zeng, H.

S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
[CrossRef]

Zhang, J.

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Zhao, H.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

Zhao, L.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Zhu, M.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Ziegler, K. J.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Zou, J.

S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008).
[CrossRef]

ACS Nano (1)

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano2(5), 873–878 (2008).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum well via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011).
[CrossRef]

Adv. Mater. (1)

M. J. Sailor and E. J. Lee, “Surface chemistry of luminescent silicon nanocrystallites,” Adv. Mater.9(10), 783–793 (1997).
[CrossRef]

Appl. Phys. Lett. (4)

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-mettallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011).
[CrossRef]

V. Švrček, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett.89(21), 213113 (2006).
[CrossRef]

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

R. Karimzadeh, J. Z. Anvari, and N. Mansour, “Nanosecond pulsed laser ablation of silicon in liquids,” Appl. Phys., A Mater. Sci. Process.94(4), 949–955 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

IEEE Photon. J. (1)

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys.83(7), 3789–3794 (1998).
[CrossRef]

X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient,” J. Appl. Phys.93(10), 6311–6319 (2003).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescene of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys.87(8), 3829–3837 (2000).
[CrossRef]

J. Pharm. Sci. (1)

P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” J. Pharm. Sci.84(4), 387–392 (1995).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

X. Chen, B. Minofar, P. Jungwirth, and H. C. Allen, “Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic Acid using sum frequency spectroscopy and molecular dynamics simulation,” J. Phys. Chem. B114(47), 15546–15553 (2010).
[CrossRef] [PubMed]

M. Yao, Y. Li, M. Hossu, A. G. Joly, Z. Liu, Z. Liu, and W. Chen, “Luminescence of lanthanide-dimethyl sulfoxide compound solutions,” J. Phys. Chem. B115(30), 9352–9359 (2011).
[CrossRef] [PubMed]

J. Phys. Chem. C (4)

K. Abderrafi, R. García Calzada, M. B. Gongalsky, I. Suárez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibáñez, and J. P. Martínez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C115(12), 5147–5151 (2011).
[CrossRef]

V. Švrček, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, and M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C115(12), 5084–5093 (2011).
[CrossRef]

S. Pradhan, S. Chen, J. Zou, and S. M. Kauzlarich, “Photoconductivity of Langmuir-blodgett monolayers of silicon nanoparticles,” J. Phys. Chem. C112(34), 13292–13298 (2008).
[CrossRef]

S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, “Origin of blue emission from silicon nanoparticles:direct transition and interface recombination,” J. Phys. Chem. C115(43), 21056–21062 (2011).
[CrossRef]

Langmuir (1)

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir19(20), 8490–8496 (2003).
[CrossRef]

Nano Lett. (3)

K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011).
[CrossRef] [PubMed]

D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011).
[CrossRef] [PubMed]

Z. F. Li and E. Ruckenstein, “Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett.4(8), 1463–1467 (2004).
[CrossRef]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys.13(45), 20255–20261 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and Luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Physica B (1)

J. T. Cabral, A. Luzar, J. Teixeira, and M. C. Bellissent-Funel, “Water dynamics in DMSO-water mixture,” Physica B276–278, 508–509 (2000).
[CrossRef]

Semicond. Sci. Technol. (1)

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Small (2)

N. H. Alsharif, C. E. M. Berger, S. S. Varanasi, Y. Chao, B. R. Horrocks, and H. K. Datta, “Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis,” Small5(2), 221–228 (2009).
[CrossRef] [PubMed]

S. W. Lin and D. H. Chen, “Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation,” Small5(1), 72–76 (2009).
[CrossRef] [PubMed]

Other (1)

B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Image of the SiNCs colloid prepared by nanosecond laser ablation of silicon wafer in the DMSO.

Fig. 2
Fig. 2

TEM image and size distribution of the SiNCs colloid prepared by nanosecond laser ablation of silicon wafer in the DMSO.

Fig. 3
Fig. 3

X-ray diffraction pattern of the SiNCs thin film which shows diffraction peaks for the silicon (111), (220) and (311) planes.

Fig. 4
Fig. 4

Absorption spectrum of the colloidal SiNCs in the DMSO at different time after production. The absorption spectrum is remained stable for one month.

Fig. 5
Fig. 5

FTIR spectrum of the SiNCs powder, Shows the presence of the oxide layer on the surface of the silicon nanocrystal.

Fig. 6
Fig. 6

Surface chemistry of the SiNCs dispersed in the DMSO.

Fig. 7
Fig. 7

PL emission spectrum of the colloidal SiNCs in the DMSO at different excitation wavelength range (a) 350-375 nm and (b) 400-475 nm.

Fig. 8
Fig. 8

Stability of PL emission spectrum of the colloidal SiNCs in the DMSO is obtained at the excitation wavelengths of (a) 375 nm and (b) 435 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ V = V S V S + V L

Metrics