Abstract

The effect of nitrogen on the growth of vertically oriented graphene nanosheets on catalyst-free silicon and glass substrates in a plasma-assisted process is studied. Different concentrations of nitrogen were found to act as versatile control knobs that could be used to tailor the length, number density and structural properties of the nanosheets. Nanosheets with different structural characteristics exhibit markedly different optical properties. The nanosheet samples were treated with a bovine serum albumin protein solution to investigate the effects of this variation on the optical properties for biosensing through confocal micro-Raman spectroscopy and UV-Vis spectrophotometry.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  2. M. S. Fuhrer, “Graphene: Ribbons piece-by-piece,” Nat. Mater.9(8), 611–612 (2010).
    [CrossRef] [PubMed]
  3. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
    [CrossRef] [PubMed]
  4. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
    [CrossRef] [PubMed]
  5. J. R. Miller, R. A. Outlaw, and B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performance,” Science329(5999), 1637–1639 (2010).
    [CrossRef] [PubMed]
  6. N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010).
    [CrossRef]
  7. A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012).
    [CrossRef] [PubMed]
  8. D. H. Seo, S. Kumar, and K. Ostrikov, “Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic,” J. Mater. Chem.21(41), 16339–16343 (2011).
    [CrossRef]
  9. N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
    [CrossRef] [PubMed]
  10. I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
    [CrossRef]
  11. K. Ostrikov, “Colloquium: Reactive plasmas as a versatile nanofabrication tool,” Rev. Mod. Phys.77(2), 489–511 (2005).
    [CrossRef]
  12. D. H. Seo, S. Kumar, and K. Ostrikov, “Control of morphology and electrical properties of self-organized graphenes in a plasma,” Carbon49(13), 4331–4339 (2011).
    [CrossRef]
  13. S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010).
    [CrossRef]
  14. S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009).
    [CrossRef]
  15. S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
    [CrossRef]
  16. H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003).
    [CrossRef]
  17. R. C. Keller, M. Seelmann-Eggebert, and H. J. Richter, “Addition of N2 as a polymer deposition inhibitor in CH4/H2 electrocyclotron resonance plasma etching of Hg1-xCdxTe,” Appl. Phys. Lett.67(25), 3750–3752 (1995).
    [CrossRef]
  18. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
    [CrossRef]

2012

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012).
[CrossRef] [PubMed]

2011

D. H. Seo, S. Kumar, and K. Ostrikov, “Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic,” J. Mater. Chem.21(41), 16339–16343 (2011).
[CrossRef]

D. H. Seo, S. Kumar, and K. Ostrikov, “Control of morphology and electrical properties of self-organized graphenes in a plasma,” Carbon49(13), 4331–4339 (2011).
[CrossRef]

2010

S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010).
[CrossRef]

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

J. R. Miller, R. A. Outlaw, and B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performance,” Science329(5999), 1637–1639 (2010).
[CrossRef] [PubMed]

N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010).
[CrossRef]

M. S. Fuhrer, “Graphene: Ribbons piece-by-piece,” Nat. Mater.9(8), 611–612 (2010).
[CrossRef] [PubMed]

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

2009

S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009).
[CrossRef]

2007

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

2005

S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
[CrossRef]

K. Ostrikov, “Colloquium: Reactive plasmas as a versatile nanofabrication tool,” Rev. Mod. Phys.77(2), 489–511 (2005).
[CrossRef]

2003

H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003).
[CrossRef]

2000

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
[CrossRef]

1995

R. C. Keller, M. Seelmann-Eggebert, and H. J. Richter, “Addition of N2 as a polymer deposition inhibitor in CH4/H2 electrocyclotron resonance plasma etching of Hg1-xCdxTe,” Appl. Phys. Lett.67(25), 3750–3752 (1995).
[CrossRef]

Ahn, J.-H.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Bae, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Balasubramanium, V.

S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
[CrossRef]

Behabtu, N.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Belle, B. D.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Britnell, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Cohen, Y.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Eres, G.

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
[CrossRef]

Fuhrer, M. S.

M. S. Fuhrer, “Graphene: Ribbons piece-by-piece,” Nat. Mater.9(8), 611–612 (2010).
[CrossRef] [PubMed]

Furman, S. A.

A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012).
[CrossRef] [PubMed]

Geim, A. K.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

Georgiou, T.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Gorbachev, R. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Goto, T.

H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003).
[CrossRef]

Green, M. J.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Hamilton, J.

S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009).
[CrossRef]

Higginbotham, A. L.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Hiramatsu, M.

H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003).
[CrossRef]

Holloway, B. C.

J. R. Miller, R. A. Outlaw, and B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performance,” Science329(5999), 1637–1639 (2010).
[CrossRef] [PubMed]

Hong, B. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Hori, M.

H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003).
[CrossRef]

Jalil, R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Jang, H.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Jang, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Keidar, M.

S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010).
[CrossRef]

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

Keller, R. C.

R. C. Keller, M. Seelmann-Eggebert, and H. J. Richter, “Addition of N2 as a polymer deposition inhibitor in CH4/H2 electrocyclotron resonance plasma etching of Hg1-xCdxTe,” Appl. Phys. Lett.67(25), 3750–3752 (1995).
[CrossRef]

Kesselman, E.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Kosynkin, D. V.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Kumar, S.

A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012).
[CrossRef] [PubMed]

D. H. Seo, S. Kumar, and K. Ostrikov, “Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic,” J. Mater. Chem.21(41), 16339–16343 (2011).
[CrossRef]

D. H. Seo, S. Kumar, and K. Ostrikov, “Control of morphology and electrical properties of self-organized graphenes in a plasma,” Carbon49(13), 4331–4339 (2011).
[CrossRef]

S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010).
[CrossRef]

S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009).
[CrossRef]

Lee, Y.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Levchenko, I.

S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010).
[CrossRef]

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

Lomeda, J. R.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Lowndes, D. H.

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
[CrossRef]

Mahorowala, A.

S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
[CrossRef]

McLaughlin, J.

S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009).
[CrossRef]

Merkulov, V. I.

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
[CrossRef]

Miller, J. R.

J. R. Miller, R. A. Outlaw, and B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performance,” Science329(5999), 1637–1639 (2010).
[CrossRef] [PubMed]

Mishchenko, A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Morozov, S. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Nagai, H.

H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003).
[CrossRef]

Novoselov, K. S.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

Ostrikov, K.

D. H. Seo, S. Kumar, and K. Ostrikov, “Control of morphology and electrical properties of self-organized graphenes in a plasma,” Carbon49(13), 4331–4339 (2011).
[CrossRef]

D. H. Seo, S. Kumar, and K. Ostrikov, “Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic,” J. Mater. Chem.21(41), 16339–16343 (2011).
[CrossRef]

S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010).
[CrossRef]

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

K. Ostrikov, “Colloquium: Reactive plasmas as a versatile nanofabrication tool,” Rev. Mod. Phys.77(2), 489–511 (2005).
[CrossRef]

Ostrikov, K. K.

A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012).
[CrossRef] [PubMed]

Outlaw, R. A.

J. R. Miller, R. A. Outlaw, and B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performance,” Science329(5999), 1637–1639 (2010).
[CrossRef] [PubMed]

Panda, S.

S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
[CrossRef]

Papakonstantinou, P.

N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010).
[CrossRef]

Parra-Vasquez, A. N. G.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Pasquali, M.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Peres, N. M. R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Raitses, Y.

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

Richter, H. J.

R. C. Keller, M. Seelmann-Eggebert, and H. J. Richter, “Addition of N2 as a polymer deposition inhibitor in CH4/H2 electrocyclotron resonance plasma etching of Hg1-xCdxTe,” Appl. Phys. Lett.67(25), 3750–3752 (1995).
[CrossRef]

Rider, A. E.

A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012).
[CrossRef] [PubMed]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

Schmidt, J.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Seelmann-Eggebert, M.

R. C. Keller, M. Seelmann-Eggebert, and H. J. Richter, “Addition of N2 as a polymer deposition inhibitor in CH4/H2 electrocyclotron resonance plasma etching of Hg1-xCdxTe,” Appl. Phys. Lett.67(25), 3750–3752 (1995).
[CrossRef]

Seo, D. H.

D. H. Seo, S. Kumar, and K. Ostrikov, “Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic,” J. Mater. Chem.21(41), 16339–16343 (2011).
[CrossRef]

D. H. Seo, S. Kumar, and K. Ostrikov, “Control of morphology and electrical properties of self-organized graphenes in a plasma,” Carbon49(13), 4331–4339 (2011).
[CrossRef]

Shang, N.

N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010).
[CrossRef]

Shashurin, A.

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

Silva, S. R. P.

N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010).
[CrossRef]

Sim, S. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Sinitskii, A.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Song, Y. I.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Sugiyama, K.

S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
[CrossRef]

Talmon, Y.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Tour, J. M.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Tsentalovich, D.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Voelkl, E.

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
[CrossRef]

Volotskova, O.

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

Wang, P.

N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010).
[CrossRef]

Wei, Y. Y.

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
[CrossRef]

Wise, R.

S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
[CrossRef]

Yadav, P. K.

S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009).
[CrossRef]

Zhu, S.-E.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, “Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon,” Appl. Phys. Lett.97(15), 151503 (2010).
[CrossRef]

R. C. Keller, M. Seelmann-Eggebert, and H. J. Richter, “Addition of N2 as a polymer deposition inhibitor in CH4/H2 electrocyclotron resonance plasma etching of Hg1-xCdxTe,” Appl. Phys. Lett.67(25), 3750–3752 (1995).
[CrossRef]

V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett.76(24), 3555–3557 (2000).
[CrossRef]

Carbon

D. H. Seo, S. Kumar, and K. Ostrikov, “Control of morphology and electrical properties of self-organized graphenes in a plasma,” Carbon49(13), 4331–4339 (2011).
[CrossRef]

I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “The large scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes,” Carbon48(15), 4570–4574 (2010).
[CrossRef]

Chem. Commun. (Camb.)

A. E. Rider, S. Kumar, S. A. Furman, and K. K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform,” Chem. Commun. (Camb.)48(21), 2659–2661 (2012).
[CrossRef] [PubMed]

Diamond Related Materials

S. Kumar, P. K. Yadav, J. Hamilton, and J. McLaughlin, “Arrays of carbon nanoflake spherules realised on copper substrate,” Diamond Related Materials18(9), 1070–1073 (2009).
[CrossRef]

J. Appl. Phys.

H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “Etching organic low dielectric film in ultra high frequency plasma using N2/H2 and N2/NH3 gases,” J. Appl. Phys.94(3), 1362–1367 (2003).
[CrossRef]

J. Mater. Chem.

D. H. Seo, S. Kumar, and K. Ostrikov, “Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic,” J. Mater. Chem.21(41), 16339–16343 (2011).
[CrossRef]

J. Phys. Chem. C

N. Shang, P. Papakonstantinou, P. Wang, and S. R. P. Silva, “Platinum integrated graphene for methanol fuel cells,” J. Phys. Chem. C114(37), 15837–15841 (2010).
[CrossRef]

J. Vac. Sci. Technol. B

S. Panda, R. Wise, A. Mahorowala, V. Balasubramanium, and K. Sugiyama, “Etching silicon containing bilayer resists in ammona-based plasmas,” J. Vac. Sci. Technol. B23(3), 900–907 (2005).
[CrossRef]

Nano Lett.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Nat. Mater.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

M. S. Fuhrer, “Graphene: Ribbons piece-by-piece,” Nat. Mater.9(8), 611–612 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

N. Behabtu, J. R. Lomeda, M. J. Green, A. L. Higginbotham, A. Sinitskii, D. V. Kosynkin, D. Tsentalovich, A. N. G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J. M. Tour, and M. Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol.5(6), 406–411 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys.

K. Ostrikov, “Colloquium: Reactive plasmas as a versatile nanofabrication tool,” Rev. Mod. Phys.77(2), 489–511 (2005).
[CrossRef]

Science

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012).
[CrossRef] [PubMed]

J. R. Miller, R. A. Outlaw, and B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performance,” Science329(5999), 1637–1639 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic shows the plasma process for growth of VGS. (b, c) pictures show the distinct color of Ar/H2/CH4 plasma without (b) and with 20% nitrogen (c) during the growth process. (d, e) SEM image shows that as-deposited VGS-networks in presence of nitrogen (e) are denser than the VGS-networks produced without nitrogen (d).

Fig. 2
Fig. 2

(a,b,c,d) Scanning electron micrographs show VGS as-deposited at N2 = 0% (a), N2 = 20% (b), N2 = 33% (c) and N2 = 50% (d). “V1” and “V2” indicate the voids as formed between the graphene nanosheets (a,b). The circles show a domain of VGS-networks and the red arrows show the gap formation between the domains (c,d). (e,f) the histograms show the number density of VGS in 1 µm2 (e) and the average length of VGS (f).

Fig. 3
Fig. 3

(a) Normalized Raman spectra of VGS deposited at N2 = 0%, N2 = 20%, N2 = 33% and N2 = 50% before the BSA treatment. (b) The UV-Vis transmission spectra of the VGS as-deposited at N2 = 0%, N2 = 20%, N2 = 33% and N2 = 50% before the BSA treatment. Note the sharp jump in transmission at 350 nm is due to a source changeover in the Cary 5000 UV-Vis spectrophotometer.

Fig. 4
Fig. 4

(a,b) Raman spectrum after the BSA treatment which details is shown in (b). (c,d,e,f) The UV-Vis transmission spectra of the VGS as-deposited at N2 = 0%, N2 = 20%, N2 = 33% and N2 = 50%, before (curve 1) and after the BSA treatment (curve 2), the arrow mark shows the decreased transmittance. Please note the sharp jump in transmission at 350 nm is due to a source changeover in the Cary 5000 UV-Vis spectrophotometer

Metrics