Abstract

We present time-resolved studies of glass densification created by an acoustic phenomenon: collision of the transverse and longitudinal sound waves inside glass. Localization of the permanent denisfied region has a lateral cross section ∼ 0.4 μm and is approximately half of the wavelength of femtosecond laser pulses which were used to generate breakdown and launched shock waves inside glass. Controlled time delay between two closely spaced irradiation spots reveals dynamics and relaxation (electronic, thermal, stress) of glass after excitation. The observed phenomenon is important for femtosecond direct laser writing and recording of waveguide couplers using multiple beams.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
    [CrossRef] [PubMed]
  2. H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
    [CrossRef]
  3. C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett.104, 154301 (2010).
    [CrossRef] [PubMed]
  4. J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
    [CrossRef] [PubMed]
  5. S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
    [CrossRef]
  6. E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
    [CrossRef]
  7. A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
    [CrossRef]
  8. E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
    [CrossRef]
  9. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
    [CrossRef] [PubMed]
  10. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
    [CrossRef]
  11. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
    [CrossRef] [PubMed]
  12. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
    [CrossRef]
  13. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13, 1999–2006 (2005).
    [CrossRef] [PubMed]
  14. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18, 16035–16041 (2010).
    [CrossRef] [PubMed]
  15. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
    [CrossRef]
  16. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
    [CrossRef]
  17. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
    [CrossRef] [PubMed]
  18. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express1, 998–1008 (2011).
    [CrossRef]
  19. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  20. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19, 6807–6821 (2011).
    [CrossRef] [PubMed]
  21. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
    [CrossRef]
  22. M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011).
    [CrossRef] [PubMed]
  23. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
    [CrossRef]
  24. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
    [CrossRef]
  25. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
    [CrossRef]
  26. V. V. Temnov, K. S. Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B23, 1954–1964 (2006).
    [CrossRef]
  27. P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B49, 7299–7305 (1994).
    [CrossRef]
  28. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
    [CrossRef] [PubMed]
  29. Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express1, 1399–1408 (2011).
    [CrossRef]
  30. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
    [CrossRef]
  31. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
    [CrossRef]
  32. D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1, 625–632 (2011).
    [CrossRef]
  33. D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett.93, 041120 (2008).
    [CrossRef]
  34. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
    [CrossRef]
  35. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
    [CrossRef]
  36. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New. J. Phys.9, 253 (2007).
    [CrossRef]
  37. C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
    [CrossRef]
  38. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
    [CrossRef]
  39. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
    [CrossRef]
  40. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
    [CrossRef]
  41. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
    [CrossRef] [PubMed]
  42. E. Brasselet and S. Juodkazis, “Intangible pointlike tracers for liquid-crystal-based microsensors,” Phys. Rev. A82, 063832 (2010).
    [CrossRef]
  43. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
    [CrossRef]
  44. S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys. A80, 683–685 (2004).
    [CrossRef]
  45. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
    [CrossRef]

2012

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

2011

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
[CrossRef]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
[CrossRef]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
[CrossRef]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19, 6807–6821 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1, 625–632 (2011).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express1, 998–1008 (2011).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011).
[CrossRef] [PubMed]

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express1, 1399–1408 (2011).
[CrossRef]

2010

E. Brasselet and S. Juodkazis, “Intangible pointlike tracers for liquid-crystal-based microsensors,” Phys. Rev. A82, 063832 (2010).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18, 16035–16041 (2010).
[CrossRef] [PubMed]

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett.104, 154301 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

2009

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

2008

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett.93, 041120 (2008).
[CrossRef]

2007

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New. J. Phys.9, 253 (2007).
[CrossRef]

2006

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

V. V. Temnov, K. S. Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B23, 1954–1964 (2006).
[CrossRef]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

2005

2004

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys. A80, 683–685 (2004).
[CrossRef]

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

2003

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
[CrossRef] [PubMed]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

2002

2001

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

1999

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

1996

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

1994

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B49, 7299–7305 (1994).
[CrossRef]

C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
[CrossRef]

1978

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
[CrossRef]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Arai, A.

Audouard, E.

Bado, P.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Bellouard, Y.

Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19, 6807–6821 (2011).
[CrossRef] [PubMed]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Bennemann, K. H.

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B49, 7299–7305 (1994).
[CrossRef]

Brasselet, E.

E. Brasselet and S. Juodkazis, “Intangible pointlike tracers for liquid-crystal-based microsensors,” Phys. Rev. A82, 063832 (2010).
[CrossRef]

Bray, R. C.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
[CrossRef]

Bressel, L.

Brisset, F.

Buividas, R.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

Calmano, T.

Canning, J.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express1, 998–1008 (2011).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
[CrossRef]

Cerullo, G.

Cheng, G.

Cook, K.

Danworaphong, S.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

de Ligny, D.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Duffy, T. S.

C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
[CrossRef]

Dugan, M.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Eaton, S.

Eida, M.

Fan, S.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett.104, 154301 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Fedorov, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
[CrossRef]

Franco, M.

Gaižauskas, E.

Gamaly, E.

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Groothoff, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
[CrossRef]

Guizard, S.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
[CrossRef]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

Hasegawa, S.

Hashimoto, T.

Hayakawa, E.

Hayasaki, Y.

Hemley, R. J.

C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
[CrossRef]

Herman, P.

Hirao, K.

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011).
[CrossRef] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Hongler, M.-O.

Huber, G.

Ionin, A. A.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
[CrossRef]

Isaka, M.

Iwata, K.

Jarutis, V.

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Jipson, V.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
[CrossRef]

Juodkazis, S.

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express1, 1399–1408 (2011).
[CrossRef]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

E. Brasselet and S. Juodkazis, “Intangible pointlike tracers for liquid-crystal-based microsensors,” Phys. Rev. A82, 063832 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New. J. Phys.9, 253 (2007).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys. A80, 683–685 (2004).
[CrossRef]

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Kanehira, S.

Kawai, J.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Kelf, T. A.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Kondo, K.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Koshihara, S.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Krolokowski, W.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

Kudryashov, I.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

Kudryashov, S. I.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
[CrossRef]

Lancry, M.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express1, 998–1008 (2011).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
[CrossRef]

Laporta, P.

Lau, W. T.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett.104, 154301 (2010).
[CrossRef] [PubMed]

Makarov, S. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
[CrossRef]

Mao, H.-K.

C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
[CrossRef]

Marangoni, M.

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Martin, P.

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

Martinez-Andrieux, V.

Matsuda, K.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Matsuda, O.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Matsuo, S.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys. A80, 683–685 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Mauclair, C.

Meade, C.

C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
[CrossRef]

Misawa, H.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New. J. Phys.9, 253 (2007).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys. A80, 683–685 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Mishchik, K.

Miura, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011).
[CrossRef] [PubMed]

Mizeikis, V.

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Mizuyama, A.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Morikawa, J.

Mysyrowicz, A.

Nakamura, K. G.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Nielsen, S.

A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
[CrossRef]

Nishi, M.

Nishiguchi, N.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Nishijima, Y.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Orie, A.

Osellame, R.

Otey, C. R.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett.104, 154301 (2010).
[CrossRef] [PubMed]

Papazoglou, D. G.

D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1, 625–632 (2011).
[CrossRef]

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett.93, 041120 (2008).
[CrossRef]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

Petermann, K.

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Polli, D.

Poumellec, B.

Prade, B.

Quate, C. F.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
[CrossRef]

Quéré, F.

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Ramponi, R.

Rao, S.

A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
[CrossRef]

Rode, A.

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

Said, A. A.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Sakakura, M.

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011).
[CrossRef] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Salcedo, J. R.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
[CrossRef]

Schubnel, A.

A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
[CrossRef]

Seet, K. K.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

Seleznev, L. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
[CrossRef]

Shah, L.

Shimotsuma, Y.

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011).
[CrossRef] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Siebenmorgen, J.

Silvestri, S. D.

Sinitsyn, D. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
[CrossRef]

Sonneville, C.

Stampfli, P.

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B49, 7299–7305 (1994).
[CrossRef]

Stoian, R.

Sudrie, L.

Sun, H.-B.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Taccheo, S.

Taddeucci, J.

A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
[CrossRef]

Takesada, M.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Takita, A.

Tanaka, Y.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Temnov, V. V.

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Tinten, K. S.

Tochio, T.

Tomoda, M.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Tuzhilin, D.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

Tuzilin, D.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

Tzortzakis, S.

D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1, 625–632 (2011).
[CrossRef]

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett.93, 041120 (2008).
[CrossRef]

Ueno, K.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Vailionis, A.

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Vanagas, E.

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

Vinciguerra, S.

A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
[CrossRef]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

von der Linde, D.

Watanabe, M.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Weickman, A.

Wickramasinghe, H. K.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Wright, O. B.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Yange, W.

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Zha, C.-S.

C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
[CrossRef]

Zhou, P.

Appl. Phys. A

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys. A80, 683–685 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Appl. Phys. Lett.

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett.93, 041120 (2008).
[CrossRef]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett.82, 2901–2903 (2003).
[CrossRef]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett.99, 201910 (2011).
[CrossRef]

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett.33, 923–926 (1978).
[CrossRef]

Chem. Rev.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

Earth Planet. Sci. Lett.

A. Schubnel, S. Nielsen, J. Taddeucci, S. Vinciguerra, and S. Rao, “Photo-acoustic study of subshear and super-shear ruptures in the laboratory,” Earth Planet. Sci. Lett.308, 424–432 (2011).
[CrossRef]

Europhys. Lett.

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

High Energy Density Phys.

E. Gamaly, A. Vailionis, V. Mizeikis, W. Yange, A. Rode, and S. Juodkazis, “Warm dense matter at the bench-top: fs-laser induced confined microexplosion,” High Energy Density Phys.8, 13–17 (2012).
[CrossRef]

J. Acoust. Soc. Am.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

J. Appl. Phys.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

J. Microlith. Microfab. Microsyst.

E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, and H. Misawa, “Glass cutting by femtosecond pulsed irradiation,” J. Microlith. Microfab. Microsyst.3, 358–363 (2004).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Generation and detection of superstrong shock waves during ablation of an aluminum surface by intense femtosecond laser pulses,” JETP Lett.94, 35–39 (2011).
[CrossRef]

Laser Photon. Rev.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Nat. Commun.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

New. J. Phys.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New. J. Phys.9, 253 (2007).
[CrossRef]

Opt. Express

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18, 16035–16041 (2010).
[CrossRef] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19, 6807–6821 (2011).
[CrossRef] [PubMed]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
[CrossRef] [PubMed]

L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13, 1999–2006 (2005).
[CrossRef] [PubMed]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19, 17780–17789 (2011).
[CrossRef] [PubMed]

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater. Express

Phys. Rev. A

E. Brasselet and S. Juodkazis, “Intangible pointlike tracers for liquid-crystal-based microsensors,” Phys. Rev. A82, 063832 (2010).
[CrossRef]

Phys. Rev. B

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, “Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering,” Phys. Rev. B50, 13105–13112 (1994).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84, 245103 (2011).
[CrossRef]

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B49, 7299–7305 (1994).
[CrossRef]

Phys. Rev. Lett.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett.104, 154301 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Interferometric pump-probe imaging. (b) Schematics of two pump pulses (1,2) delayed in time by Δt and separated in space by Δx. The side-spots depict location of glass densification induced by shock wave; separation between them is L.

Fig. 2
Fig. 2

Acoustically-induced densification (the darker side spots) at the end of relaxation T = ∞. Lateral phase images around the focus region of two-pulse irradiation after the end of relaxation; the darker regions are more dense. Time separation, Δt, between two pump pulses at 800 nm wavelength is shown; phase scale is from −π to π. Spatial separation between two pump pulses of energy E1 = E2 = 50 nJ was Δx = 1.0 μm (measured experimentally); L is the length between the densified side spots; polarization of pulses was linear (horizontal in the image plane). The upper irradiation site is where the first pulse arrived (darker appearance), the lower site is location of the second (delayed) pulse.

Fig. 3
Fig. 3

Phase at the location the middle point between the two pump pulses x = 0 (a) and at the “side spots” (b) vs separation between pulses, Δt, when Δx = 1 μm. E1 = E2 = 50 nJ. Lines are eye guidelines. Single pixel size corresponds to 35 nm on the sample. The site −L/2 (in (b)) is where the first pulse arrived, the site +L/2 is location of the second (delayed) pulse.

Fig. 4
Fig. 4

Phase map vs separation between pulses, Δx, for Δt = 0.2ps and two pump energies E1 = E2 = 30, 40, 50 nJ. The site −L/2 (see, Fig. 3(a)) is where the first pulse arrived, the site +L/2 is location of the second (delayed) pulse.

Fig. 5
Fig. 5

(a) Phase at the location the middle point x = 0 vs separation between pulses, Δx, (see, Fig. 4) for Δt = 0.2 ps and pump energies of two pulses E1 = E2 = 30; 40; 50 nJ. (b) Phase at the locations x = ±L/2 (side spots) vs separation between pulses, Δx, at pulse energy Ep = 50 nJ (two separate experiments). Lines are eye guidelines. The site −L/2 (see, Fig. 3(a)) is where the first pulse arrived, the site +L/2 is location of the second (delayed) pulse.

Fig. 6
Fig. 6

Phase maps of photo-acoustically induced densification at different pulse energies of 30-60 nJ at T = 5 ns and after all relaxations; Δt = 0.2 ps, Δx = 0.8 μm. Separation between side spots, L, is increasing with pulse energy, Ep. Dashed lines are alignment eye guides. Phase spans from −π to π. The site −L/2 (see, Fig. 3(a)) is where the first pulse arrived, the site +L/2 is location of the second (delayed) pulse.

Fig. 7
Fig. 7

Phase at the mid-point location x = 0 vs pulse energy: experiment (from Fig. 6) and linear fit by ∝ 0.15[μm](EEth) with Eth = 20 nJ; ∼ 0.15 μm is the most close distance two separate irradiation spots can be brought to. The pressure which is driving micro-explosion is proportional to the absorbed energy of the pulse of energy E. Note, both axes are logarithmic.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L / 2 + Δ x / 2 + d / 2 v l = L / 2 Δ x / 2 + d / 2 v t

Metrics