Abstract

Over the past several decades, silica sol-gel materials have attracted significant interest from the optics community because of their extremely versatile synthesis method. Because silica sol gels are fabricated using liquid precursors, dopants can be directly and uniformly incorporated into the silica matrix. Additionally, judicious selection of the dopant material and sol-gel catalyst allows the refractive index of the final silica film to be tuned over a wide range. Tuning the refractive index of silica materials enables the direct integration of silica devices on a silicon substrate, benefiting applications in telecommunications and integrated optics. While previous materials characterizations studies have focused primarily on the near-IR, given the rapidly emerging field of biophotonics, it is equally important to understand how these materials behave at visible wavelengths. In the present work, thin silica sol-gel films are formed from either tetraethyl orthosilicate (TEOS) or methyltriethoxysilane (MTES) with titanium butoxide (Ti(OBu)4). We characterized the basic material properties using Fourier Transform Infrared Spectroscopy (FTIR) and ellipsometry. In addition, by spin-coating the sol gel films onto optical resonant cavities, we determined the thermo-optic coefficient and the transmission loss of the material at both visible and near-IR wavelengths. The addition of titanium allows the films’ refractive index, material loss, and thermo-optic coefficient to be tuned, making these films useful for integrated optics and sensing applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994).
    [CrossRef]
  2. J. Livage and C. Sanchez, “Sol-gel chemistry,” J. Non-Cryst. Solids145, 11–19 (1992).
    [CrossRef]
  3. R. L. Dumas, I. Tejedor-Tejedor, and M. A. Anderson, “Dependence of SiO2 gel structure on gelation conditions and sol reaction temperature as followed by FTIR and Nitrogen adsorption measurements,” J. Porous Mater.5(2), 95–101 (1998).
    [CrossRef]
  4. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
    [CrossRef]
  5. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009).
    [CrossRef] [PubMed]
  6. H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012).
    [CrossRef] [PubMed]
  7. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21(7), 453–455 (1996).
    [CrossRef] [PubMed]
  8. L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994).
    [CrossRef] [PubMed]
  9. H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010).
    [CrossRef] [PubMed]
  10. X. Zhang, H.-S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett.96(15), 153304 (2010).
    [CrossRef]
  11. M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater.32(9), 975–981 (2010).
    [CrossRef]
  12. H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
    [CrossRef]
  13. D. T. Larson, L. A. Lott, and D. L. Cash, “Surface film thickness determination by reflectance measurements,” Appl. Opt.12(6), 1271–1275 (1973).
    [CrossRef] [PubMed]
  14. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  15. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
    [CrossRef]
  16. H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett.36(11), 2152–2154 (2011).
    [CrossRef] [PubMed]
  17. M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys.96(2-3), 201–210 (2006).
    [CrossRef]
  18. P. J. Launer, “Infrared analysis of organosilicon compounds: spectra-structure correlations,” in Silicone Compounds Register and Review (1987), pp. 100–103.
  19. P. Innocenzi, “Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview,” J. Non-Cryst. Solids316(2-3), 309–319 (2003).
    [CrossRef]
  20. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, San Diego, 1998).
  21. E. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  22. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett.29(6), 626–628 (2004).
    [CrossRef] [PubMed]
  23. T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006).
    [CrossRef]

2012

H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012).
[CrossRef] [PubMed]

2011

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett.36(11), 2152–2154 (2011).
[CrossRef] [PubMed]

2010

H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010).
[CrossRef] [PubMed]

X. Zhang, H.-S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett.96(15), 153304 (2010).
[CrossRef]

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater.32(9), 975–981 (2010).
[CrossRef]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
[CrossRef]

2009

2006

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys.96(2-3), 201–210 (2006).
[CrossRef]

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006).
[CrossRef]

2004

2003

P. Innocenzi, “Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview,” J. Non-Cryst. Solids316(2-3), 309–319 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

1998

R. L. Dumas, I. Tejedor-Tejedor, and M. A. Anderson, “Dependence of SiO2 gel structure on gelation conditions and sol reaction temperature as followed by FTIR and Nitrogen adsorption measurements,” J. Porous Mater.5(2), 95–101 (1998).
[CrossRef]

1996

1994

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994).
[CrossRef]

1992

J. Livage and C. Sanchez, “Sol-gel chemistry,” J. Non-Cryst. Solids145, 11–19 (1992).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

1973

Abdel-Baki, M.

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys.96(2-3), 201–210 (2006).
[CrossRef]

Anderson, M. A.

R. L. Dumas, I. Tejedor-Tejedor, and M. A. Anderson, “Dependence of SiO2 gel structure on gelation conditions and sol reaction temperature as followed by FTIR and Nitrogen adsorption measurements,” J. Porous Mater.5(2), 95–101 (1998).
[CrossRef]

Armani, A. M.

H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012).
[CrossRef] [PubMed]

H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett.36(11), 2152–2154 (2011).
[CrossRef] [PubMed]

H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010).
[CrossRef] [PubMed]

X. Zhang, H.-S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett.96(15), 153304 (2010).
[CrossRef]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
[CrossRef]

H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Armstrong, N. R.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

Burshtein, Z.

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater.32(9), 975–981 (2010).
[CrossRef]

Cai, C.

Cash, D. L.

Choi, H. S.

H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012).
[CrossRef] [PubMed]

H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett.36(11), 2152–2154 (2011).
[CrossRef] [PubMed]

Choi, H.-S.

H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010).
[CrossRef] [PubMed]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
[CrossRef]

X. Zhang, H.-S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett.96(15), 153304 (2010).
[CrossRef]

Dave, B. C.

B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994).
[CrossRef]

Dumas, R. L.

R. L. Dumas, I. Tejedor-Tejedor, and M. A. Anderson, “Dependence of SiO2 gel structure on gelation conditions and sol reaction temperature as followed by FTIR and Nitrogen adsorption measurements,” J. Porous Mater.5(2), 95–101 (1998).
[CrossRef]

Dunn, B.

B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994).
[CrossRef]

El-Diasty, F.

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys.96(2-3), 201–210 (2006).
[CrossRef]

Gorodetsky, M. L.

Gvishi, R.

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater.32(9), 975–981 (2010).
[CrossRef]

Hayes, J.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Hsu, H.-S.

Hunt, H. K.

H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012).
[CrossRef] [PubMed]

Ilchenko, V. S.

Innocenzi, P.

P. Innocenzi, “Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview,” J. Non-Cryst. Solids316(2-3), 309–319 (2003).
[CrossRef]

Ismail, S.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Laing, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Larson, D. T.

Le, T.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

Livage, J.

J. Livage and C. Sanchez, “Sol-gel chemistry,” J. Non-Cryst. Solids145, 11–19 (1992).
[CrossRef]

Lobino, M.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Lott, L. A.

Maleki, L.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006).
[CrossRef]

L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett.29(6), 626–628 (2004).
[CrossRef] [PubMed]

Matsko, A. B.

Matthews, J. C. F.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Neiroukh, D.

H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012).
[CrossRef] [PubMed]

O'Brien, J. L.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Peruzzo, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Pokrass, M.

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater.32(9), 975–981 (2010).
[CrossRef]

Politi, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Saavedra, S. S.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Sanchez, C.

J. Livage and C. Sanchez, “Sol-gel chemistry,” J. Non-Cryst. Solids145, 11–19 (1992).
[CrossRef]

Savchenkov, A. A.

Shadbolt, P. J.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Steier, W. H.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006).
[CrossRef]

Tazawa, H.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006).
[CrossRef]

Tejedor-Tejedor, I.

R. L. Dumas, I. Tejedor-Tejedor, and M. A. Anderson, “Dependence of SiO2 gel structure on gelation conditions and sol reaction temperature as followed by FTIR and Nitrogen adsorption measurements,” J. Porous Mater.5(2), 95–101 (1998).
[CrossRef]

Thompson, M. G.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Valentine, J. S.

B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994).
[CrossRef]

Verde, M. R.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Wahab, F. A. A.

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys.96(2-3), 201–210 (2006).
[CrossRef]

Yang, L.

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, H.-S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett.96(15), 153304 (2010).
[CrossRef]

H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010).
[CrossRef] [PubMed]

Zink, J. I.

B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994).
[CrossRef]

Anal. Chem.

B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, “Sol-gel encapsulation methods for biosensors,” Anal. Chem.66(22), 1120A–1126A (1994).
[CrossRef]

L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem.66(8), 1254–1263 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

X. Zhang, H.-S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett.96(15), 153304 (2010).
[CrossRef]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett.18(7), 859–861 (2006).
[CrossRef]

J. Lightwave Technol.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

J. Non-Cryst. Solids

P. Innocenzi, “Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview,” J. Non-Cryst. Solids316(2-3), 309–319 (2003).
[CrossRef]

J. Livage and C. Sanchez, “Sol-gel chemistry,” J. Non-Cryst. Solids145, 11–19 (1992).
[CrossRef]

J. Porous Mater.

R. L. Dumas, I. Tejedor-Tejedor, and M. A. Anderson, “Dependence of SiO2 gel structure on gelation conditions and sol reaction temperature as followed by FTIR and Nitrogen adsorption measurements,” J. Porous Mater.5(2), 95–101 (1998).
[CrossRef]

Langmuir

H. S. Choi, D. Neiroukh, H. K. Hunt, and A. M. Armani, “Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices,” Langmuir28(1), 849–854 (2012).
[CrossRef] [PubMed]

Mater. Chem. Phys.

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys.96(2-3), 201–210 (2006).
[CrossRef]

Nat. Photonics

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater.32(9), 975–981 (2010).
[CrossRef]

Other

P. J. Launer, “Infrared analysis of organosilicon compounds: spectra-structure correlations,” in Silicone Compounds Register and Review (1987), pp. 100–103.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, San Diego, 1998).

E. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) SEM image of silica microtoroid, (b) SEM image of TEOS sol-gel spin-coated on a silica microtoroid.

Fig. 2
Fig. 2

Finite element modeling of optical field distribution of 633 nm wavelength in microtoroid coated with (a) TEOS sol-gel (n = 1.454 at 633 nm), (b) MTES R = 0.1 sol-gel (n = 1.518 at 633 nm), and (c) MTES R = 0.3 sol-gel (n = 1.618 at 633 nm). The optical field distribution was determined by finding the magnitude of the electric field squared, thus the units of the scale bar are in V2/μm2. As the refractive index of the sol-gel coating increased, the optical mode shifted to the coating, resulting in a higher percentage of the optical field being contained in the sol-gel film.

Fig. 3
Fig. 3

The characterization set-up. a) A schematic of the optical device characterization set-up. A tunable laser (Laser input) is used to couple light into the cavity using a tapered fiber, and the output light is detected on a photodetector (PD). The initial alignment is imaged with a machine vision system. The signal is recorded using a high speed oscilloscope/digitizer (PCI card). The laser is controlled using a function generator (FG) and a GPIB PCI card. b) An optical image of the toroid coupled to a tapered optical fiber.

Fig. 4
Fig. 4

FTIR spectroscopy comparison of thermally grown silicon oxide, TEOS sol-gel thin films, MTES R = 0.1, and MTES R = 0.3. The arrow on the graph highlights the peak at 905 cm−1 that confirms to the presence of Si-O-Ti bond vibrations.

Fig. 5
Fig. 5

Spectroscopic ellipsometry measurements for MTES R = 0.3 thin films. (a) Ψ with WVASE32 parameter fitting, and (b) Δ with WVASE32 parameter fitting.

Fig. 6
Fig. 6

Representative transmission spectra of toroids coated with a) TEOS, b) MTES R = 0.1. and c) MTES R = 0.3 films. By fitting a Lorentzian curve to the spectra, the quality factor can be measured. The presence of titanium in the coating increases the film’s material loss, therefore reducing the quality factor of the coated toroids from over 107 (TEOS film) to 105 (0.3 MTES film).

Fig. 7
Fig. 7

Representative Δλ versus ΔT data for toroids coated with a) TEOS, b) MTES R = 0.1, and c) MTES R = 0.3 films.

Tables (1)

Tables Icon

Table 1 Thermo-Optic Coefficient and Material Loss Measurements

Metrics