Abstract

We present firstly the preparation of color tunable Al2Y4O9: Yb, Er inverse opal photonic crystal and influence of photonic bandgap on upconversion emissions of Er3+. The results show that Al2Y4O9: Yb, Er upconversion inverse opals were successfully prepared by a self-assembly technique in combination with a sol-gel method. The intensity of upconversion emission can be tuned by controlling the structure of the inverse opal. Significant suppression of the green or red upconversion emission in the Al2Y4O9: Yb, Er inverse opals was obtained if the photonic band-gap overlaps with the Er3+ ions emission band, resulting in color tunable upconversion Al2Y4O9 phosphors. This research not only realizes the colour modification of upconversion emission, but also opens the opportunity to control the propagation of photons.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
    [CrossRef] [PubMed]
  2. A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
    [CrossRef]
  3. H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
    [CrossRef]
  4. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
    [CrossRef]
  5. S. O. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion Luminescence of Er3+ in Alkali Bismuth Gallate Glasses,” Appl. Phys. Lett.77(4), 483–485 (2000).
    [CrossRef]
  6. C. H. Liu and D. P. Chen, “Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence,” J. Mater. Chem.17(37), 3875–3880 (2007).
    [CrossRef]
  7. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  9. J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
    [CrossRef]
  10. Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
    [CrossRef]
  11. R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: Solvable quantum-electrodynamical model,” Phys. Rev. A47(4), 3380–3384 (1993).
    [CrossRef] [PubMed]
  12. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A50(2), 1764–1769 (1994).
    [CrossRef] [PubMed]
  13. X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett.88(9), 093902 (2002).
    [CrossRef] [PubMed]
  14. Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
    [CrossRef] [PubMed]
  15. Z. W. Yang, K. Zhu, Z. G. Song, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt.50(3), 287–290 (2011).
    [CrossRef] [PubMed]
  16. O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
    [CrossRef]
  17. P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
    [CrossRef]
  18. H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
    [CrossRef]
  19. F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
    [CrossRef]
  20. M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
    [CrossRef]
  21. X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
    [CrossRef]
  22. A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
    [CrossRef]
  23. Y. Li, T. Kunitake, S. Fujikawa, and K. Ozasa, “Photoluminescence modification in 3D-ordered films of fluorescent microspheres,” Langmuir23(17), 9109–9113 (2007).
    [CrossRef] [PubMed]

2011 (1)

2010 (4)

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
[CrossRef]

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
[CrossRef]

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

2009 (3)

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

2008 (3)

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
[CrossRef]

P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
[CrossRef]

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

2007 (4)

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

C. H. Liu and D. P. Chen, “Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence,” J. Mater. Chem.17(37), 3875–3880 (2007).
[CrossRef]

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Y. Li, T. Kunitake, S. Fujikawa, and K. Ozasa, “Photoluminescence modification in 3D-ordered films of fluorescent microspheres,” Langmuir23(17), 9109–9113 (2007).
[CrossRef] [PubMed]

2004 (1)

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

2002 (1)

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett.88(9), 093902 (2002).
[CrossRef] [PubMed]

2000 (2)

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

S. O. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion Luminescence of Er3+ in Alkali Bismuth Gallate Glasses,” Appl. Phys. Lett.77(4), 483–485 (2000).
[CrossRef]

1994 (1)

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

1993 (1)

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: Solvable quantum-electrodynamical model,” Phys. Rev. A47(4), 3380–3384 (1993).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Almeida, R. M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Aloshyna, M.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Armellini, C.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Brolo, A. G.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Buddhudu, S.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

Chai, R. T.

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Chen, C.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Chen, D. P.

C. H. Liu and D. P. Chen, “Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence,” J. Mater. Chem.17(37), 3875–3880 (2007).
[CrossRef]

Chen, D. Q.

P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
[CrossRef]

Chiappini, A.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Chiasera, A.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Choi, B. C.

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

Chung, P. S.

S. O. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion Luminescence of Er3+ in Alkali Bismuth Gallate Glasses,” Appl. Phys. Lett.77(4), 483–485 (2000).
[CrossRef]

Clara Gonçalves, M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

De la Rosa, E.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
[CrossRef]

del-Castillo, J.

A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
[CrossRef]

Deng, Y. H.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Diaz-Torres, L. A.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
[CrossRef]

Dong, N.

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

Ferrari, M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Fujikawa, S.

Y. Li, T. Kunitake, S. Fujikawa, and K. Ozasa, “Photoluminescence modification in 3D-ordered films of fluorescent microspheres,” Langmuir23(17), 9109–9113 (2007).
[CrossRef] [PubMed]

Gu, B. Y.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett.88(9), 093902 (2002).
[CrossRef] [PubMed]

Guo, H.

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

Huang, P.

P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
[CrossRef]

Huang, X. G.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Jeong, J. H.

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

Jestin, Y.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

John, S.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kam, C. H.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

Kim, K. H.

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

Kunitake, T.

Y. Li, T. Kunitake, S. Fujikawa, and K. Ozasa, “Photoluminescence modification in 3D-ordered films of fluorescent microspheres,” Langmuir23(17), 9109–9113 (2007).
[CrossRef] [PubMed]

Lam, Y. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

Li, B.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Li, C. X.

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Li, L.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Li, L. L.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Li, Y.

Y. Li, T. Kunitake, S. Fujikawa, and K. Ozasa, “Photoluminescence modification in 3D-ordered films of fluorescent microspheres,” Langmuir23(17), 9109–9113 (2007).
[CrossRef] [PubMed]

Li, Z. X.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Lin, J.

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Liu, C. H.

C. H. Liu and D. P. Chen, “Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence,” J. Mater. Chem.17(37), 3875–3880 (2007).
[CrossRef]

Liu, F.

P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
[CrossRef]

Lou, L. R.

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

Man, S. O.

S. O. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion Luminescence of Er3+ in Alkali Bismuth Gallate Glasses,” Appl. Phys. Lett.77(4), 483–485 (2000).
[CrossRef]

Mattarelli, M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Méndez-Ramos, J.

A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
[CrossRef]

Meza, O.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
[CrossRef]

Montagna, M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Moon, B. K.

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

Mori, T.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

Moser, E.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Nabiev, R. F.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: Solvable quantum-electrodynamical model,” Phys. Rev. A47(4), 3380–3384 (1993).
[CrossRef] [PubMed]

Naruke, H.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

Ng, S. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

Nunzi Conti, G.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Ozasa, K.

Y. Li, T. Kunitake, S. Fujikawa, and K. Ozasa, “Photoluminescence modification in 3D-ordered films of fluorescent microspheres,” Langmuir23(17), 9109–9113 (2007).
[CrossRef] [PubMed]

Pelli, S.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Peng, C.

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Pun, E. Y. B.

S. O. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion Luminescence of Er3+ in Alkali Bismuth Gallate Glasses,” Appl. Phys. Lett.77(4), 483–485 (2000).
[CrossRef]

Qiu, J. B.

Qu, X. S.

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

Quang, T.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

Righini, G. C.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

Rodríguez, V. D.

A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
[CrossRef]

Salas, P.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
[CrossRef]

Sanchez-Mondragon, J. J.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: Solvable quantum-electrodynamical model,” Phys. Rev. A47(4), 3380–3384 (1993).
[CrossRef] [PubMed]

Santana-Alonso, A.

A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
[CrossRef]

Shi, Y. F.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Sivakumar, S.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Solis, D.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
[CrossRef]

Song, Z. G.

Sun, L.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Sun, L. D.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

van Veggel, F. C. J. M.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Venkataramanan, M.

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

Wang, L. L.

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Wang, R. Z.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett.88(9), 093902 (2002).
[CrossRef] [PubMed]

Wang, X. H.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett.88(9), 093902 (2002).
[CrossRef] [PubMed]

Wang, Y. S.

P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
[CrossRef]

Weng, F. Y.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
[CrossRef]

Xia, S. D.

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

Xie, Q.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamase, T.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

Yan, C. H.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Yanes, A. C.

A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
[CrossRef]

Yang, G.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Yang, G. Z.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett.88(9), 093902 (2002).
[CrossRef] [PubMed]

Yang, H. K.

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

Yang, J.

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Yang, Z. W.

Z. W. Yang, K. Zhu, Z. G. Song, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt.50(3), 287–290 (2011).
[CrossRef] [PubMed]

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Yeh, P.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: Solvable quantum-electrodynamical model,” Phys. Rev. A47(4), 3380–3384 (1993).
[CrossRef] [PubMed]

Yin, M.

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

Yin, Z. Y.

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
[CrossRef]

P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
[CrossRef]

Yuan, Q.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Zhang, C. M.

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Zhang, R. Y.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Zhang, W. P.

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

Zhao, D. Y.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Zhou, D. C.

Zhou, H. P.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Zhou, J.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

Zhou, Y.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

Zhu, K.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. O. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion Luminescence of Er3+ in Alkali Bismuth Gallate Glasses,” Appl. Phys. Lett.77(4), 483–485 (2000).
[CrossRef]

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett.24(76), 3513–3515 (2000).
[CrossRef]

Chem. Commun. (Camb.) (1)

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band-gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett.455(1-3), 55–58 (2008).
[CrossRef]

Chemistry (1)

J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, and J. Lin, “Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm,” Chemistry15(18), 4649–4655 (2009).
[CrossRef] [PubMed]

J. Mater. Chem. (2)

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

C. H. Liu and D. P. Chen, “Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence,” J. Mater. Chem.17(37), 3875–3880 (2007).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids353(5-7), 674–678 (2007).
[CrossRef]

J. Phys. Chem. B (1)

H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B108(50), 19205–19209 (2004).
[CrossRef]

J. Phys. Chem. C (2)

M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, “Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals made with Tb3+-doped LaF3 Nanoparticles,” J. Phys. Chem. C111(10), 4047–4051 (2007).
[CrossRef]

X. S. Qu, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, and K. H. Kim, “Preparation and photoluminescence properties of Gd2O3: Eu3+ inverse opal photonic crystals,” J. Phys. Chem. C114(47), 19891–19894 (2010).
[CrossRef]

J. Solid State Chem. (1)

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission,” J. Solid State Chem.181(10), 2763–2767 (2008).
[CrossRef]

Langmuir (1)

Y. Li, T. Kunitake, S. Fujikawa, and K. Ozasa, “Photoluminescence modification in 3D-ordered films of fluorescent microspheres,” Langmuir23(17), 9109–9113 (2007).
[CrossRef] [PubMed]

Mater. Sci. Eng. B (1)

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B174(1-3), 177–181 (2010).
[CrossRef]

Opt. Mater. (2)

A. Santana-Alonso, J. Méndez-Ramos, A. C. Yanes, J. del-Castillo, and V. D. Rodríguez, “Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+,” Opt. Mater.32(9), 903–908 (2010).
[CrossRef]

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

Phys. Rev. A (2)

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: Solvable quantum-electrodynamical model,” Phys. Rev. A47(4), 3380–3384 (1993).
[CrossRef] [PubMed]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett.88(9), 093902 (2002).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

P. Huang, F. Liu, D. Q. Chen, Y. S. Wang, and Y. L. Yu, “Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+:NaYF4 nanocrystals,” Phys. Status Solidi A205(7), 1680–1684 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a), (b) SEM images of unitary opal templates constructed with polystyrene microspheres 400 nm in diameter and binary templates constructed with polystyrene microspheres 400 and 220 nm in diameter, respectively. (c), (d) SEM images of the IPC-1 and reference sample, respectively.

Fig. 2
Fig. 2

XRD patterns of the Al2Y4O9 inverse opal.

Fig. 3
Fig. 3

Transmittance spectra of the IPC-1, IPC-2 and reference sample.

Fig. 4
Fig. 4

Upconversion emission spectrum of (a) the IPC-1 and reference sample, and (b) the IPC-2 and reference sample.

Fig. 5
Fig. 5

CIE chromaticity coordinates of the IPC-1, IPC-2 and RS.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ=1.633D (  n 2 eff sin 2 θ) 1/2
n 2 eff =  n AYO 2 f AYO +  n 2 air (1 f AYO )

Metrics