Abstract

We report on a sequential two-step near-infrared quantum splitting in Ho3+-doped germanate glass ceramics (GC). The formation of LaF3 nanocrystals is confirmed by X-ray diffraction and transmission electron microscopy analysis. Emission of two NIR photons at 1013 and 1190 nm for one incident photon absorption within the 300-560 nm region has been demonstrated by static and dynamic photoemission and excitation spectroscopy. Using the spectroscopic parameters calculated from Judd-Ofelt theory, the quantum efficiency of Ho3+ in GC sample is estimated to be approximately 110%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Ronda, “Luminescent materials with quantum efficiency larger than 1, status and prospects,” J. Lumin.100(1-4), 301–305 (2002).
    [CrossRef]
  2. S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
    [CrossRef]
  3. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
    [CrossRef]
  4. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
    [CrossRef]
  5. W. W. Piper, J. A. DeLuca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
    [CrossRef]
  6. J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
    [CrossRef]
  7. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
    [CrossRef] [PubMed]
  8. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999).
    [CrossRef]
  9. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
    [CrossRef]
  10. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
    [CrossRef]
  11. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
    [CrossRef]
  12. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
    [CrossRef]
  13. D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
    [CrossRef]
  14. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
    [CrossRef]
  15. D. C. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008).
    [CrossRef] [PubMed]
  16. S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
    [CrossRef] [PubMed]
  17. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
    [CrossRef]
  18. J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
    [CrossRef]
  19. D. Q. Chen, Y. L. Yu, H. Lin, P. Huang, Z. F. Shan, and Y. S. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+ couple,” Opt. Lett.35(2), 220–222 (2010).
    [CrossRef] [PubMed]
  20. H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett.36(6), 876–878 (2011).
    [CrossRef] [PubMed]
  21. D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
    [CrossRef]
  22. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  23. G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys.37(3), 511–520 (1962).
    [CrossRef]
  24. B. Zhou, D. L. Yang, H. Lin, and E. Y. B. Pun, “Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications,” J. Non-Cryst. Solids357(11-13), 2468–2471 (2011).
    [CrossRef]
  25. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
    [CrossRef]
  26. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev.157(2), 262–272 (1967).
    [CrossRef]
  27. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
    [CrossRef]
  28. H. H. Caspers, H. E. Rast, and J. L. Fry, “Absorption, fluorescence, and energy levels of Ho3+ in LaF3,” J. Chem. Phys.53(8), 3208–3216 (1970).
    [CrossRef]

2011

H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett.36(6), 876–878 (2011).
[CrossRef] [PubMed]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

B. Zhou, D. L. Yang, H. Lin, and E. Y. B. Pun, “Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications,” J. Non-Cryst. Solids357(11-13), 2468–2471 (2011).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

2010

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

D. Q. Chen, Y. L. Yu, H. Lin, P. Huang, Z. F. Shan, and Y. S. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+ couple,” Opt. Lett.35(2), 220–222 (2010).
[CrossRef] [PubMed]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

2009

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

2008

2007

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

2005

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
[CrossRef]

2002

C. Ronda, “Luminescent materials with quantum efficiency larger than 1, status and prospects,” J. Lumin.100(1-4), 301–305 (2002).
[CrossRef]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

1999

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999).
[CrossRef]

1974

W. W. Piper, J. A. DeLuca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

1970

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

H. H. Caspers, H. E. Rast, and J. L. Fry, “Absorption, fluorescence, and energy levels of Ho3+ in LaF3,” J. Chem. Phys.53(8), 3208–3216 (1970).
[CrossRef]

1967

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev.157(2), 262–272 (1967).
[CrossRef]

1962

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

1961

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

1957

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
[CrossRef]

Aarts, L.

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Biner, D.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Bril, A.

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

Caspers, H. H.

H. H. Caspers, H. E. Rast, and J. L. Fry, “Absorption, fluorescence, and energy levels of Ho3+ in LaF3,” J. Chem. Phys.53(8), 3208–3216 (1970).
[CrossRef]

Chen, D. C.

Chen, D. Q.

Chen, J. X.

de Jager, A. W.

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

DeLuca, J. A.

W. W. Piper, J. A. DeLuca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
[CrossRef]

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999).
[CrossRef]

Eilers, J. J.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Fry, J. L.

H. H. Caspers, H. E. Rast, and J. L. Fry, “Absorption, fluorescence, and energy levels of Ho3+ in LaF3,” J. Chem. Phys.53(8), 3208–3216 (1970).
[CrossRef]

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Güdel, H.-U.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Ham, F. S.

W. W. Piper, J. A. DeLuca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

Henke, M.

S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
[CrossRef]

Huang, P.

Huang, X. Y.

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Krämer, K.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Kück, S.

S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
[CrossRef]

Lakshminarayana, G.

Lin, H.

Luo, J.

Meijer, J.-M.

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

Meijerink, A.

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Osiac, E.

S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
[CrossRef]

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999).
[CrossRef]

Peng, M. Y.

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Piper, W. W.

W. W. Piper, J. A. DeLuca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

Pun, E. Y. B.

B. Zhou, D. L. Yang, H. Lin, and E. Y. B. Pun, “Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications,” J. Non-Cryst. Solids357(11-13), 2468–2471 (2011).
[CrossRef]

Qiu, J. R.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Rast, H. E.

H. H. Caspers, H. E. Rast, and J. L. Fry, “Absorption, fluorescence, and energy levels of Ho3+ in LaF3,” J. Chem. Phys.53(8), 3208–3216 (1970).
[CrossRef]

Ronda, C.

C. Ronda, “Luminescent materials with quantum efficiency larger than 1, status and prospects,” J. Lumin.100(1-4), 301–305 (2002).
[CrossRef]

Scheffler, T.

S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
[CrossRef]

Shan, Z. F.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Sokólska, I.

S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
[CrossRef]

Sommerdijk, J. L.

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

van der Ende, B. M.

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

van Wijngaarden, J. T.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Wang, J.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Wang, Y. S.

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev.157(2), 262–272 (1967).
[CrossRef]

Wegh, R. T.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Weng, F. Y.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

D. C. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

Wondraczek, L.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Yang, A. P.

Yang, D. L.

B. Zhou, D. L. Yang, H. Lin, and E. Y. B. Pun, “Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications,” J. Non-Cryst. Solids357(11-13), 2468–2471 (2011).
[CrossRef]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Ye, S.

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Yu, D. C.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

Yu, Y. L.

Zhang, Q. Y.

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Zhou, B.

B. Zhou, D. L. Yang, H. Lin, and E. Y. B. Pun, “Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications,” J. Non-Cryst. Solids357(11-13), 2468–2471 (2011).
[CrossRef]

Zhu, B.

Adv. Mater.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Appl. Phys. Lett.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011).
[CrossRef]

J. Appl. Phys.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

H. H. Caspers, H. E. Rast, and J. L. Fry, “Absorption, fluorescence, and energy levels of Ho3+ in LaF3,” J. Chem. Phys.53(8), 3208–3216 (1970).
[CrossRef]

J. Lumin.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999).
[CrossRef]

C. Ronda, “Luminescent materials with quantum efficiency larger than 1, status and prospects,” J. Lumin.100(1-4), 301–305 (2002).
[CrossRef]

W. W. Piper, J. A. DeLuca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

J. Non-Cryst. Solids

B. Zhou, D. L. Yang, H. Lin, and E. Y. B. Pun, “Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications,” J. Non-Cryst. Solids357(11-13), 2468–2471 (2011).
[CrossRef]

J. Phys. Chem. C

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev.157(2), 262–272 (1967).
[CrossRef]

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
[CrossRef]

Phys. Rev. B

S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

Prog. Mater. Sci.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Science

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) XRD patterns of the precursor glass (PG) and GC heat-treated at 560 °C for 8 h. (b) TEM bright field image and corresponding selected area electron diffraction pattern (inset) of the GC. (c) High-resolution TEM image of GC.

Fig. 2
Fig. 2

Absorption spectrum of 0.1 mol% Ho3+ single-doped GC sample. The inset shows the simplified energy level diagram of Ho3+ along with the mechanisms of sequential two-step two-photon NIR-QS.

Fig. 3
Fig. 3

(a) Excitation spectra of the sample monitored at 540, 1013, and 1190 nm, respectively, and (b) visible-to-NIR emission spectrum under 450 nm excitation.

Fig. 4
Fig. 4

NIR emission spectra of the sample under excitation of (a) 536 nm, (b) 638 nm and (c) 880 nm, respectively.

Fig. 5
Fig. 5

Time resolved luminescence spectra (λex = 536 nm) of the sample with the time delays106, 108, 110, 120 and 140 μs in the wavelength range of 900-1270 nm.

Tables (1)

Tables Icon

Table 1 Radiative Properties of Ho3+ in GC

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η H o 3+ = η S 5 2 , F 5 4 +( β S 5 2 , F 5 4 F 5 5 + J=5,6 β S 5 2 , F 5 4 I 5 J ) η S 5 2 , F 5 4 η I 5 6 ,

Metrics