Abstract

Quantum dot-based light emitting diodes have extensively been investigated over the past two decades in order to utilize high color purity and photophysical stability of quantum dots. In this review, progresses on the preparation of quantum dots, structural design of electroluminescence devices using quantum dots, and printing processes for full-color quantum dot display will be discussed. The obstacles originating from the use of heavy metals, large hole injection barrier, and imperfect printing processes for pixilation have limited the practical applications of quantum dot-based devices. It is expected that recent complementary approaches on materials, device structures, and new printing processes would accelerate the realization of quantum dot displays.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys.79(2), 1086–1088 (1983).
    [CrossRef]
  2. W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
    [CrossRef] [PubMed]
  3. X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
    [CrossRef]
  4. L. Qu, Z. A. Peng, and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett.1(6), 333–337 (2001).
    [CrossRef]
  5. L. Qu, W. W. Yu, and X. Peng, “In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals,” Nano Lett.4(3), 465–469 (2004).
    [CrossRef]
  6. X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
    [CrossRef]
  7. B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003).
    [CrossRef]
  8. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
    [CrossRef]
  9. Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
    [CrossRef] [PubMed]
  10. M. A. Hines and P. Guyot-Sionnest, “Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals,” J. Phys. Chem. B102(19), 3655–3657 (1998).
    [CrossRef]
  11. M. Shim and P. Guyot-Sionnest, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc.123(47), 11651–11654 (2001).
    [CrossRef] [PubMed]
  12. D. Battaglia and X. Peng, “Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent,” Nano Lett.2(9), 1027–1030 (2002).
    [CrossRef]
  13. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
    [CrossRef]
  14. J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” J. Phys. Chem. B110(6), 2497–2501 (2006).
    [CrossRef] [PubMed]
  15. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004).
    [CrossRef]
  16. K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
    [CrossRef]
  17. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
    [CrossRef] [PubMed]
  18. M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1844–1849 (2003).
    [CrossRef]
  19. S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002).
    [CrossRef] [PubMed]
  20. W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
    [CrossRef] [PubMed]
  21. D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
    [CrossRef]
  22. J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
    [CrossRef] [PubMed]
  23. Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
    [CrossRef]
  24. J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004).
    [CrossRef]
  25. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci.30(1), 545–610 (2000).
    [CrossRef]
  26. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
    [CrossRef] [PubMed]
  27. D. Vanmaekelbergh and P. Liljeroth, “Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals,” Chem. Soc. Rev.34(4), 299–312 (2005).
    [CrossRef] [PubMed]
  28. D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001).
    [CrossRef]
  29. A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
    [CrossRef]
  30. H. Liu, J. S. Owen, and A. P. Alivisatos, “Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis,” J. Am. Chem. Soc.129(2), 305–312 (2007).
    [CrossRef] [PubMed]
  31. R. Xie, Z. Li, and X. Peng, “Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals,” J. Am. Chem. Soc.131(42), 15457–15466 (2009).
    [CrossRef] [PubMed]
  32. J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010).
    [CrossRef] [PubMed]
  33. D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994).
    [CrossRef] [PubMed]
  34. P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res.44(1), 1–13 (2011).
    [CrossRef] [PubMed]
  35. A. L. Efros and M. Rosen, “The Electronic Structure Of Semiconductor Nanocrystals,” Annu. Rev. Mater. Sci.30(1), 475–521 (2000).
    [CrossRef]
  36. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
    [CrossRef] [PubMed]
  37. D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16338–16346 (1996).
    [CrossRef] [PubMed]
  38. D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996).
    [CrossRef] [PubMed]
  39. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999).
    [CrossRef]
  40. H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission,” Phys. Rev. B56(3), 1496–1508 (1997).
    [CrossRef]
  41. X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008).
    [CrossRef] [PubMed]
  42. S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” J. Phys. Chem. B108(45), 17393–17397 (2004).
    [CrossRef]
  43. S.-H. Wei and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals,” Appl. Phys. Lett.72(16), 2011–2013 (1998).
    [CrossRef]
  44. D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science319(5871), 1776–1779 (2008).
    [CrossRef] [PubMed]
  45. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
    [CrossRef]
  46. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
    [CrossRef] [PubMed]
  47. Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
    [CrossRef]
  48. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
    [CrossRef]
  49. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
    [CrossRef] [PubMed]
  50. D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
    [CrossRef]
  51. P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small5(2), 154–168 (2009).
    [CrossRef] [PubMed]
  52. M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem.100(2), 468–471 (1996).
    [CrossRef]
  53. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
    [CrossRef]
  54. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
    [CrossRef]
  55. J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
    [CrossRef] [PubMed]
  56. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
    [CrossRef]
  57. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124(9), 2049–2055 (2002).
    [CrossRef] [PubMed]
  58. M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nanocrystals,” Acc. Chem. Res.43(5), 621–630 (2010).
    [CrossRef] [PubMed]
  59. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005).
    [CrossRef] [PubMed]
  60. X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
    [CrossRef] [PubMed]
  61. X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
    [CrossRef]
  62. X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
    [CrossRef]
  63. X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003).
    [CrossRef] [PubMed]
  64. S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
    [CrossRef] [PubMed]
  65. Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
    [CrossRef]
  66. L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
    [CrossRef] [PubMed]
  67. M. Protière and P. Reiss, “Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range,” Small3(3), 399–403 (2007).
    [CrossRef] [PubMed]
  68. W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008).
    [CrossRef]
  69. Z. Deng, H. Yan, and Y. Liu, “Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc.131(49), 17744–17745 (2009).
    [CrossRef] [PubMed]
  70. D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
    [CrossRef] [PubMed]
  71. T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012).
    [CrossRef]
  72. Y.-M. Sung, Y.-J. Lee, and K.-S. Park, “Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals,” J. Am. Chem. Soc.128(28), 9002–9003 (2006).
    [CrossRef] [PubMed]
  73. R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc.125(23), 7100–7106 (2003).
    [CrossRef] [PubMed]
  74. R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
    [CrossRef] [PubMed]
  75. S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
    [CrossRef] [PubMed]
  76. W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008).
    [CrossRef]
  77. A. L. Washington and G. F. Strouse, “Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots,” Chem. Mater.21(15), 3586–3592 (2009).
    [CrossRef]
  78. N. P. Gurusinghe, N. N. Hewa-Kasakarage, and M. Zamkov, “Composition-Tunable Properties of CdSxTe1−x Alloy Nanocrystals,” J. Phys. Chem. C112(33), 12795–12800 (2008).
    [CrossRef]
  79. J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
    [CrossRef]
  80. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
    [CrossRef] [PubMed]
  81. L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc.130(35), 11588–11589 (2008).
    [CrossRef] [PubMed]
  82. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
    [CrossRef]
  83. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
    [CrossRef] [PubMed]
  84. S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
    [CrossRef] [PubMed]
  85. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004).
    [CrossRef]
  86. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
    [CrossRef]
  87. M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys.82(11), 5837–5842 (1997).
    [CrossRef]
  88. H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
    [CrossRef]
  89. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
    [CrossRef] [PubMed]
  90. S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
    [CrossRef]
  91. J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
    [CrossRef] [PubMed]
  92. S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
    [CrossRef]
  93. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
    [CrossRef]
  94. J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
    [CrossRef] [PubMed]
  95. Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
    [CrossRef]
  96. W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
    [CrossRef]
  97. W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
    [CrossRef] [PubMed]
  98. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
    [CrossRef] [PubMed]
  99. P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
    [CrossRef]
  100. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
    [CrossRef] [PubMed]
  101. H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
    [CrossRef] [PubMed]
  102. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
    [CrossRef]
  103. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
    [CrossRef] [PubMed]
  104. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
    [CrossRef]
  105. V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
    [CrossRef] [PubMed]
  106. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011).
    [CrossRef]
  107. J. W. Stouwdam and R. A. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” J. Mater. Chem.18(16), 1889–1894 (2008).
    [CrossRef]
  108. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
    [PubMed]
  109. T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
    [CrossRef]
  110. J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
    [CrossRef]
  111. M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
    [CrossRef] [PubMed]
  112. W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
    [CrossRef] [PubMed]
  113. M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
    [CrossRef]
  114. C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
    [CrossRef]
  115. V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
    [CrossRef] [PubMed]
  116. V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
    [CrossRef] [PubMed]
  117. H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet Printed RGB Quantum Dot-Hybrid LED,” J. Disp. Technol.6(3), 87–89 (2010).
    [CrossRef]
  118. L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
    [CrossRef] [PubMed]
  119. A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett.63(14), 2002–2004 (1993).
    [CrossRef]
  120. S. Alom Ruiz and C. S. Chen, “Microcontact printing: A tool to pattern,” Soft Matter3(2), 168–177 (2007).
    [CrossRef]
  121. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
    [CrossRef]
  122. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
    [CrossRef] [PubMed]
  123. A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
    [CrossRef]
  124. A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
    [CrossRef] [PubMed]
  125. S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
    [CrossRef]
  126. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010).
    [CrossRef] [PubMed]
  127. E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter4(4), 703–713 (2008).
    [CrossRef]
  128. H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet printing of light emitting quantum dots,” Appl. Phys. Lett.94(7), 073108 (2009).
    [CrossRef]

2012 (2)

T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012).
[CrossRef]

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

2011 (8)

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
[CrossRef] [PubMed]

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011).
[CrossRef]

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
[CrossRef] [PubMed]

P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res.44(1), 1–13 (2011).
[CrossRef] [PubMed]

2010 (8)

J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010).
[CrossRef] [PubMed]

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nanocrystals,” Acc. Chem. Res.43(5), 621–630 (2010).
[CrossRef] [PubMed]

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet Printed RGB Quantum Dot-Hybrid LED,” J. Disp. Technol.6(3), 87–89 (2010).
[CrossRef]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

2009 (14)

A. L. Washington and G. F. Strouse, “Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots,” Chem. Mater.21(15), 3586–3592 (2009).
[CrossRef]

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet printing of light emitting quantum dots,” Appl. Phys. Lett.94(7), 073108 (2009).
[CrossRef]

Z. Deng, H. Yan, and Y. Liu, “Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc.131(49), 17744–17745 (2009).
[CrossRef] [PubMed]

R. Xie, Z. Li, and X. Peng, “Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals,” J. Am. Chem. Soc.131(42), 15457–15466 (2009).
[CrossRef] [PubMed]

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small5(2), 154–168 (2009).
[CrossRef] [PubMed]

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

2008 (16)

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
[CrossRef]

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008).
[CrossRef]

E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter4(4), 703–713 (2008).
[CrossRef]

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
[CrossRef] [PubMed]

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
[CrossRef]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
[CrossRef]

J. W. Stouwdam and R. A. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” J. Mater. Chem.18(16), 1889–1894 (2008).
[CrossRef]

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc.130(35), 11588–11589 (2008).
[CrossRef] [PubMed]

N. P. Gurusinghe, N. N. Hewa-Kasakarage, and M. Zamkov, “Composition-Tunable Properties of CdSxTe1−x Alloy Nanocrystals,” J. Phys. Chem. C112(33), 12795–12800 (2008).
[CrossRef]

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

2007 (10)

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
[CrossRef] [PubMed]

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
[CrossRef]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

S. Alom Ruiz and C. S. Chen, “Microcontact printing: A tool to pattern,” Soft Matter3(2), 168–177 (2007).
[CrossRef]

M. Protière and P. Reiss, “Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range,” Small3(3), 399–403 (2007).
[CrossRef] [PubMed]

X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
[CrossRef]

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

H. Liu, J. S. Owen, and A. P. Alivisatos, “Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis,” J. Am. Chem. Soc.129(2), 305–312 (2007).
[CrossRef] [PubMed]

2006 (8)

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” J. Phys. Chem. B110(6), 2497–2501 (2006).
[CrossRef] [PubMed]

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Y.-M. Sung, Y.-J. Lee, and K.-S. Park, “Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals,” J. Am. Chem. Soc.128(28), 9002–9003 (2006).
[CrossRef] [PubMed]

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
[CrossRef] [PubMed]

T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
[CrossRef]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

2005 (8)

S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
[CrossRef]

D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
[CrossRef]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
[CrossRef]

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005).
[CrossRef] [PubMed]

D. Vanmaekelbergh and P. Liljeroth, “Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals,” Chem. Soc. Rev.34(4), 299–312 (2005).
[CrossRef] [PubMed]

2004 (8)

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004).
[CrossRef]

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

L. Qu, W. W. Yu, and X. Peng, “In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals,” Nano Lett.4(3), 465–469 (2004).
[CrossRef]

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
[CrossRef]

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” J. Phys. Chem. B108(45), 17393–17397 (2004).
[CrossRef]

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

2003 (8)

S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
[CrossRef]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
[CrossRef] [PubMed]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003).
[CrossRef] [PubMed]

R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc.125(23), 7100–7106 (2003).
[CrossRef] [PubMed]

X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
[CrossRef]

B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003).
[CrossRef]

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1844–1849 (2003).
[CrossRef]

2002 (8)

S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002).
[CrossRef] [PubMed]

D. Battaglia and X. Peng, “Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent,” Nano Lett.2(9), 1027–1030 (2002).
[CrossRef]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
[CrossRef]

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

2001 (6)

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
[CrossRef]

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001).
[CrossRef]

L. Qu, Z. A. Peng, and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

M. Shim and P. Guyot-Sionnest, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc.123(47), 11651–11654 (2001).
[CrossRef] [PubMed]

2000 (4)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci.30(1), 545–610 (2000).
[CrossRef]

A. L. Efros and M. Rosen, “The Electronic Structure Of Semiconductor Nanocrystals,” Annu. Rev. Mater. Sci.30(1), 475–521 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

1999 (1)

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999).
[CrossRef]

1998 (3)

M. A. Hines and P. Guyot-Sionnest, “Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals,” J. Phys. Chem. B102(19), 3655–3657 (1998).
[CrossRef]

S.-H. Wei and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals,” Appl. Phys. Lett.72(16), 2011–2013 (1998).
[CrossRef]

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

1997 (4)

M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys.82(11), 5837–5842 (1997).
[CrossRef]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission,” Phys. Rev. B56(3), 1496–1508 (1997).
[CrossRef]

1996 (5)

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16338–16346 (1996).
[CrossRef] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996).
[CrossRef] [PubMed]

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem.100(2), 468–471 (1996).
[CrossRef]

Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
[CrossRef]

1994 (3)

D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994).
[CrossRef] [PubMed]

O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
[CrossRef]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

1993 (1)

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett.63(14), 2002–2004 (1993).
[CrossRef]

1990 (1)

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

1983 (1)

R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys.79(2), 1086–1088 (1983).
[CrossRef]

Abel, K. A.

K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
[CrossRef]

Alivisatos, A. P.

J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010).
[CrossRef] [PubMed]

H. Liu, J. S. Owen, and A. P. Alivisatos, “Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis,” J. Am. Chem. Soc.129(2), 305–312 (2007).
[CrossRef] [PubMed]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys.82(11), 5837–5842 (1997).
[CrossRef]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Alom Ruiz, S.

S. Alom Ruiz and C. S. Chen, “Microcontact printing: A tool to pattern,” Soft Matter3(2), 168–177 (2007).
[CrossRef]

Amaratunga, G.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

An, L.

D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
[CrossRef]

Anikeeva, P.

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

Anikeeva, P. O.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
[CrossRef]

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

Anni, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Babel, A.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Bae, W. K.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008).
[CrossRef]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Bailey, R. E.

R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc.125(23), 7100–7106 (2003).
[CrossRef] [PubMed]

Baldwin, R. K.

J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004).
[CrossRef]

Barbara, P. F.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Bardajee, G. R.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Bardecker, J. A.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Basché, T.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Battaglia, D.

D. Battaglia and X. Peng, “Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent,” Nano Lett.2(9), 1027–1030 (2002).
[CrossRef]

Bawendi, M.

S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
[CrossRef]

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

Bawendi, M. G.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
[CrossRef]

P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
[CrossRef]

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
[CrossRef] [PubMed]

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
[CrossRef]

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003).
[CrossRef]

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci.30(1), 545–610 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999).
[CrossRef]

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996).
[CrossRef] [PubMed]

D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16338–16346 (1996).
[CrossRef] [PubMed]

D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994).
[CrossRef] [PubMed]

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

Beard, M. C.

D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
[CrossRef] [PubMed]

Bender, J. P.

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

Benson, O.

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

Bertolotti, J.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

Bertoni, C.

C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
[CrossRef]

Biasiucci, M.

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
[CrossRef] [PubMed]

Bowers, M. J.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Boyer, J.-C.

K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
[CrossRef]

Bozyigit, D.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

Breen, C.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

Brus, L. E.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys.79(2), 1086–1088 (1983).
[CrossRef]

Bulovic, V.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
[CrossRef]

P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
[CrossRef]

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
[CrossRef] [PubMed]

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
[CrossRef]

S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
[CrossRef]

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

Burda, C.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005).
[CrossRef] [PubMed]

Butt, H.-J.

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

Cademartiri, L.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

Carroll, P. J.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

Caruge, J. M.

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
[CrossRef]

Caruge, J.-M.

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

Chae, J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Chan, E. M.

J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010).
[CrossRef] [PubMed]

Char, K.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008).
[CrossRef]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Chen, B.

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Chen, C. H.

T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
[CrossRef]

Chen, C. S.

S. Alom Ruiz and C. S. Chen, “Microcontact printing: A tool to pattern,” Soft Matter3(2), 168–177 (2007).
[CrossRef]

Chen, C.-J.

T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
[CrossRef]

Chen, J.-F.

T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
[CrossRef]

Chen, S.-Y.

T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
[CrossRef]

Chen, X.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005).
[CrossRef] [PubMed]

X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
[CrossRef]

Cheng, Y. J.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

Cheon, J.

S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002).
[CrossRef] [PubMed]

Cho, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Cho, K.-S.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Cho, S.-N.

S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002).
[CrossRef] [PubMed]

Choi, B. L.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Chu, T.-Y.

T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
[CrossRef]

Cingolani, R.

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
[CrossRef] [PubMed]

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Clark, B. L.

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

Coe, S.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

Coe-Sullivan, S.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
[CrossRef]

S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
[CrossRef]

Coe-Sullivan, S. A.

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

Colvin, V. L.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Copenhaver, D.

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

Cragg, G. E.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Curtis, C. J.

O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
[CrossRef]

Dabbousi, B. O.

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

D'Amone, S.

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

De Giorgi, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

de Mello Donegá, C.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” J. Phys. Chem. B108(45), 17393–17397 (2004).
[CrossRef]

Deng, Z.

Z. Deng, H. Yan, and Y. Liu, “Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc.131(49), 17744–17745 (2009).
[CrossRef] [PubMed]

Dhagat, P.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010).
[CrossRef] [PubMed]

Ding, I. K.

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Dixit, S. K.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Dong, Z.

X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
[CrossRef] [PubMed]

Dorn, A.

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
[CrossRef] [PubMed]

Doty, R. C.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Dunn, S.

C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
[CrossRef]

Efros, A. L.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

A. L. Efros and M. Rosen, “The Electronic Structure Of Semiconductor Nanocrystals,” Annu. Rev. Mater. Sci.30(1), 475–521 (2000).
[CrossRef]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996).
[CrossRef] [PubMed]

El-Sayed, M. A.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005).
[CrossRef] [PubMed]

English, D. S.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Erwin, S. C.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

Eychmuller, A.

C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
[CrossRef]

Falkner, J. C.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Fan, X.

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

Feldman, L. C.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
[CrossRef] [PubMed]

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Fendler, J. H.

Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
[CrossRef]

Feng, Y.

X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
[CrossRef]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003).
[CrossRef] [PubMed]

Frangioni, J. V.

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

Fritz, K.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Fromer, N. A.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Fu, H.

H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission,” Phys. Rev. B56(3), 1496–1508 (1997).
[CrossRef]

Gallardo, D.

C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
[CrossRef]

Galli, G.

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

Gao, M.

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

Gaponik, N.

C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
[CrossRef]

Ge, J.-P.

J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” J. Phys. Chem. B110(6), 2497–2501 (2006).
[CrossRef] [PubMed]

Geier, M. L.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Geyer, S.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

Gigli, G.

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
[CrossRef] [PubMed]

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

Ginger, D. S.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Götzinger, S.

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

Gu, Z.

X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
[CrossRef]

Guerin, G.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Guldi, D. M.

Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
[CrossRef]

Guo, W.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

Gur, I.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Gurusinghe, N. P.

N. P. Gurusinghe, N. N. Hewa-Kasakarage, and M. Zamkov, “Composition-Tunable Properties of CdSxTe1−x Alloy Nanocrystals,” J. Phys. Chem. C112(33), 12795–12800 (2008).
[CrossRef]

Guyot-Sionnest, P.

M. Shim and P. Guyot-Sionnest, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc.123(47), 11651–11654 (2001).
[CrossRef] [PubMed]

M. A. Hines and P. Guyot-Sionnest, “Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals,” J. Phys. Chem. B102(19), 3655–3657 (1998).
[CrossRef]

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem.100(2), 468–471 (1996).
[CrossRef]

Haase, M.

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
[CrossRef]

D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001).
[CrossRef]

Hahn, M. A.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Halpert, J. E.

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
[CrossRef]

P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
[CrossRef]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

Han, J. Y.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Han, M.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
[CrossRef]

X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
[CrossRef] [PubMed]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003).
[CrossRef] [PubMed]

Han, M.-Y.

M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nanocrystals,” Acc. Chem. Res.43(5), 621–630 (2010).
[CrossRef] [PubMed]

Harris, F.

K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
[CrossRef]

Haverinen, H. M.

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet Printed RGB Quantum Dot-Hybrid LED,” J. Disp. Technol.6(3), 87–89 (2010).
[CrossRef]

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010).
[CrossRef] [PubMed]

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet printing of light emitting quantum dots,” Appl. Phys. Lett.94(7), 073108 (2009).
[CrossRef]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Herman, G. S.

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

Hewa-Kasakarage, N. N.

N. P. Gurusinghe, N. N. Hewa-Kasakarage, and M. Zamkov, “Composition-Tunable Properties of CdSxTe1−x Alloy Nanocrystals,” J. Phys. Chem. C112(33), 12795–12800 (2008).
[CrossRef]

Hinds, S.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Hines, M. A.

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1844–1849 (2003).
[CrossRef]

M. A. Hines and P. Guyot-Sionnest, “Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals,” J. Phys. Chem. B102(19), 3655–3657 (1998).
[CrossRef]

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem.100(2), 468–471 (1996).
[CrossRef]

Holloway, P. H.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011).
[CrossRef]

Holmes, J. D.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Huang, H.

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
[CrossRef] [PubMed]

Hull, R.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

Hur, H.

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

Hwang, S.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Jabbour, G. E.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010).
[CrossRef] [PubMed]

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet Printed RGB Quantum Dot-Hybrid LED,” J. Disp. Technol.6(3), 87–89 (2010).
[CrossRef]

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet printing of light emitting quantum dots,” Appl. Phys. Lett.94(7), 073108 (2009).
[CrossRef]

Jang, E.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Jang, H.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Janssen, R. A. J.

J. W. Stouwdam and R. A. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” J. Mater. Chem.18(16), 1889–1894 (2008).
[CrossRef]

Jaramillo, R.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
[CrossRef] [PubMed]

Jen, A. K. Y.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Jenekhe, S. A.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Jen-La?Plante, I.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

Jensen, K. F.

B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Ji, X.

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
[CrossRef]

Jiang, S.

D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
[CrossRef]

Johnson, M. B.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

Johnston, K. P.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Jones, K. M.

O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
[CrossRef]

Joo, W.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Jun, S.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Jun, Y. W.

S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002).
[CrossRef] [PubMed]

Jung, J.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

Kadavanich, A. V.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Kagan, C. R.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci.30(1), 545–610 (2000).
[CrossRef]

Kahen, K.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Kambhampati, P.

P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res.44(1), 1–13 (2011).
[CrossRef] [PubMed]

Kang, M.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012).
[CrossRef]

Kang, S. W.

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

Kang, Z.

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

Kauzlarich, S. M.

J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004).
[CrossRef]

Kazlas, P. T.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

Keay, J. C.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

Keszler, D. A.

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

Ki Bae, W.

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

Ki Nam, M.

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

Kim, B.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Kim, B.-K.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Kim, D. H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Kim, J. M.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Kim, J. W.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Kim, K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Kim, L.

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

Kim, L.-A.

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

Kim, S.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Kim, S. K.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012).
[CrossRef]

Kim, S.-W.

T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012).
[CrossRef]

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

Kim, T.

T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012).
[CrossRef]

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Kim, T.-H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Kim, Y.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

Kingston, D.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Kirstein, S.

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999).
[CrossRef]

Knoll, W.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
[CrossRef]

X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
[CrossRef] [PubMed]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003).
[CrossRef] [PubMed]

Kolb, U.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Korgel, B. A.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Kornowski, A.

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
[CrossRef]

Kortan, A. R.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

Kotov, N. A.

Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
[CrossRef]

Kovalenko, M. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

Krauss, T. D.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Kudera, S.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Kuijper, J.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Kuk, Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Kulkarni, A. P.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Kumar, A.

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett.63(14), 2002–2004 (1993).
[CrossRef]

Kuno, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

Kwak, J.

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Kwak, S. K.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Kwon, J.-Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Kwon, S.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999).
[CrossRef]

Lee, C.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Lee, D.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Lee, E. K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Lee, H.

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

Lee, J. E.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Lee, J.-S.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

Lee, S.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008).
[CrossRef]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Lee, S. J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

Lee, S. Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Lee, S.-M.

S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002).
[CrossRef] [PubMed]

Lee, S.-T.

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

Lee, Y.-J.

Y.-M. Sung, Y.-J. Lee, and K.-S. Park, “Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals,” J. Am. Chem. Soc.128(28), 9002–9003 (2006).
[CrossRef] [PubMed]

Lerario, G.

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

Lesser, C.

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

Li, J.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Li, J. J.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

Li, L.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small5(2), 154–168 (2009).
[CrossRef] [PubMed]

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc.130(35), 11588–11589 (2008).
[CrossRef] [PubMed]

Li, L. S.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Li, X. H.

Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
[CrossRef]

Li, Y.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Li, Y. C.

Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
[CrossRef]

Li, Y. F.

Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
[CrossRef]

Li, Y.-D.

J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” J. Phys. Chem. B110(6), 2497–2501 (2006).
[CrossRef] [PubMed]

Li, Z.

R. Xie, Z. Li, and X. Peng, “Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals,” J. Am. Chem. Soc.131(42), 15457–15466 (2009).
[CrossRef] [PubMed]

Likovich, E. M.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
[CrossRef] [PubMed]

Liljeroth, P.

D. Vanmaekelbergh and P. Liljeroth, “Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals,” Chem. Soc. Rev.34(4), 299–312 (2005).
[CrossRef] [PubMed]

Lim, J.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Lin, W.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Liu, H.

J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010).
[CrossRef] [PubMed]

H. Liu, J. S. Owen, and A. P. Alivisatos, “Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis,” J. Am. Chem. Soc.129(2), 305–312 (2007).
[CrossRef] [PubMed]

Liu, M. S.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Liu, S.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
[CrossRef]

Liu, Y.

Z. Deng, H. Yan, and Y. Liu, “Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc.131(49), 17744–17745 (2009).
[CrossRef] [PubMed]

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

Luo, J.

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Luther, J. M.

D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
[CrossRef] [PubMed]

Ma, D. D. D.

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

Maccagnano-Zacher, S.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Madigan, C. F.

P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
[CrossRef]

Manna, L.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

Mattoussi, H.

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Mazzeo, M.

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
[CrossRef] [PubMed]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999).
[CrossRef]

McBride, J.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
[CrossRef] [PubMed]

McBride, J. R.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Meijerink, A.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” J. Phys. Chem. B108(45), 17393–17397 (2004).
[CrossRef]

Mekis, I.

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

Mews, A.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Micic, O. I.

O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
[CrossRef]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Mishima, T. D.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

Mohwald, H.

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

Morello, G.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

Munro, A. M.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Murray, C. B.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci.30(1), 545–610 (2000).
[CrossRef]

D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994).
[CrossRef] [PubMed]

Myllyla, R. A.

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet Printed RGB Quantum Dot-Hybrid LED,” J. Disp. Technol.6(3), 87–89 (2010).
[CrossRef]

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet printing of light emitting quantum dots,” Appl. Phys. Lett.94(7), 073108 (2009).
[CrossRef]

Nair, G. P.

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
[CrossRef] [PubMed]

Nakahara, S.

R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys.79(2), 1086–1088 (1983).
[CrossRef]

Nam, M. K.

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008).
[CrossRef]

Narayanamurti, V.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
[CrossRef] [PubMed]

Narayanan, R.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005).
[CrossRef] [PubMed]

Nazzal, A. Y.

X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
[CrossRef]

Newton, T.

Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
[CrossRef]

Nie, S.

R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc.125(23), 7100–7106 (2003).
[CrossRef] [PubMed]

Nirmal, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

Niu, Y.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Niu, Y. H.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

Norris, D. J.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16338–16346 (1996).
[CrossRef] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996).
[CrossRef] [PubMed]

D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994).
[CrossRef] [PubMed]

Nozik, A. J.

D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
[CrossRef] [PubMed]

O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
[CrossRef]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Ohnishi, S.

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

Opila, R. L.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

Ouyang, J.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Owen, J. S.

J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010).
[CrossRef] [PubMed]

H. Liu, J. S. Owen, and A. P. Alivisatos, “Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis,” J. Am. Chem. Soc.129(2), 305–312 (2007).
[CrossRef] [PubMed]

Ozin, G. A.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

Palumbo, M.

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

Pan, D.

D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
[CrossRef]

Panzer, M. J.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

Park, I.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Park, J. W.

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

Park, K.-S.

Y.-M. Sung, Y.-J. Lee, and K.-S. Park, “Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals,” J. Am. Chem. Soc.128(28), 9002–9003 (2006).
[CrossRef] [PubMed]

Park, L. S.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Park, M.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Park, S.

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

Pell, L. E.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Peng, X.

R. Xie, Z. Li, and X. Peng, “Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals,” J. Am. Chem. Soc.131(42), 15457–15466 (2009).
[CrossRef] [PubMed]

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

L. Qu, W. W. Yu, and X. Peng, “In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals,” Nano Lett.4(3), 465–469 (2004).
[CrossRef]

X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
[CrossRef]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
[CrossRef]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

D. Battaglia and X. Peng, “Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent,” Nano Lett.2(9), 1027–1030 (2002).
[CrossRef]

L. Qu, Z. A. Peng, and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys.82(11), 5837–5842 (1997).
[CrossRef]

Peng, Z. A.

X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
[CrossRef]

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

L. Qu, Z. A. Peng, and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

Pennycook, S. J.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
[CrossRef] [PubMed]

Perkins, J.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

Pettigrew, K. A.

J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004).
[CrossRef]

Protière, M.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small5(2), 154–168 (2009).
[CrossRef] [PubMed]

M. Protière and P. Reiss, “Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range,” Small3(3), 399–403 (2007).
[CrossRef] [PubMed]

Puzder, A.

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

Qian, L.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011).
[CrossRef]

Qu, L.

L. Qu, W. W. Yu, and X. Peng, “In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals,” Nano Lett.4(3), 465–469 (2004).
[CrossRef]

X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
[CrossRef]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

L. Qu, Z. A. Peng, and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

Radzilowski, L. H.

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

Rajeswaran, M.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Ramanathan, S.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
[CrossRef] [PubMed]

Rapaport, J. L.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Ratcliffe, C. I.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Regulacio, M. D.

M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nanocrystals,” Acc. Chem. Res.43(5), 621–630 (2010).
[CrossRef] [PubMed]

Reiss, P.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small5(2), 154–168 (2009).
[CrossRef] [PubMed]

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc.130(35), 11588–11589 (2008).
[CrossRef] [PubMed]

M. Protière and P. Reiss, “Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range,” Small3(3), 399–403 (2007).
[CrossRef] [PubMed]

Ren, X.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Reynolds, T. A.

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

Ripmeester, J. A.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Rizzo, A.

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
[CrossRef] [PubMed]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Rogach, A. L.

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
[CrossRef]

D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001).
[CrossRef]

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

Rosen, M.

A. L. Efros and M. Rosen, “The Electronic Structure Of Semiconductor Nanocrystals,” Annu. Rev. Mater. Sci.30(1), 475–521 (2000).
[CrossRef]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996).
[CrossRef] [PubMed]

Rosenthal, S. J.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
[CrossRef] [PubMed]

Rossetti, R.

R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys.79(2), 1086–1088 (1983).
[CrossRef]

Rousseau, I.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

Rubner, M. F.

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

Russell, K. J.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
[CrossRef] [PubMed]

Sacra, A.

D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994).
[CrossRef] [PubMed]

Sapienza, R.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

Sargent, E. H.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Schlamp, M. C.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys.82(11), 5837–5842 (1997).
[CrossRef]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Scholes, G. D.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1844–1849 (2003).
[CrossRef]

Schubert, U. S.

E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter4(4), 703–713 (2008).
[CrossRef]

Semonin, O. E.

D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
[CrossRef] [PubMed]

Shan, J.

K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
[CrossRef]

Shevchenko, E. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

Shih, B. S.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Shim, M.

M. Shim and P. Guyot-Sionnest, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc.123(47), 11651–11654 (2001).
[CrossRef] [PubMed]

Shirasaki, Y.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

Sichmeller, C.

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

Silcox, J.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Singh, M.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010).
[CrossRef] [PubMed]

Smith, D. K.

D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
[CrossRef] [PubMed]

Smith, P. J.

E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter4(4), 703–713 (2008).
[CrossRef]

Snee, P.

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

Sprague, J. R.

O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
[CrossRef]

Steckel, J. S.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
[CrossRef]

S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
[CrossRef]

Steigerwald, M. L.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

Stevenson, M.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

Stott, N. E.

B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003).
[CrossRef]

Stouwdam, J. W.

J. W. Stouwdam and R. A. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” J. Mater. Chem.18(16), 1889–1894 (2008).
[CrossRef]

Strouse, G. F.

A. L. Washington and G. F. Strouse, “Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots,” Chem. Mater.21(15), 3586–3592 (2009).
[CrossRef]

Sukhovatkin, V.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Sun, Q.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Sung, Y.-M.

Y.-M. Sung, Y.-J. Lee, and K.-S. Park, “Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals,” J. Am. Chem. Soc.128(28), 9002–9003 (2006).
[CrossRef] [PubMed]

Swafford, L. A.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Talapin, D. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
[CrossRef]

D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001).
[CrossRef]

Tekin, E.

E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter4(4), 703–713 (2008).
[CrossRef]

Thomas, E. L.

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

Tian, Y.

Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
[CrossRef]

Tian, Y. Q.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

Tonzola, C. J.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Tracy, J. B.

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

Treadway, J.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
[CrossRef] [PubMed]

Tsang, C. H. A.

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

van Veggel, F. C. J. M.

K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
[CrossRef]

Vanmaekelbergh, D.

D. Vanmaekelbergh and P. Liljeroth, “Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals,” Chem. Soc. Rev.34(4), 299–312 (2005).
[CrossRef] [PubMed]

von Freymann, G.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

Wager, J. F.

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

Wang, D.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Wang, Q.

D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
[CrossRef]

Wang, X.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
[CrossRef]

Wang, Y. A.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

Washington, A. L.

A. L. Washington and G. F. Strouse, “Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots,” Chem. Mater.21(15), 3586–3592 (2009).
[CrossRef]

Watt, T. L.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Weber, S.

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

Wei, S.-H.

S.-H. Wei and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals,” Appl. Phys. Lett.72(16), 2011–2013 (1998).
[CrossRef]

Weigand, L. A.

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

Weller, H.

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
[CrossRef]

D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001).
[CrossRef]

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

White, T. J.

X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
[CrossRef] [PubMed]

Whitesides, G. M.

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett.63(14), 2002–2004 (1993).
[CrossRef]

Wiersma, D. S.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

Wilkinson, B.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Williamson, A. J.

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

Winnik, M. A.

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Wong, N.-B.

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

Woo, H.

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Woo, W. K.

S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
[CrossRef]

Woo, W.-K.

S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
[CrossRef]

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

Wood, V.

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
[CrossRef]

Wu, X.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Wuister, S. F.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” J. Phys. Chem. B108(45), 17393–17397 (2004).
[CrossRef]

Xiao, M.

X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
[CrossRef]

X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
[CrossRef]

Xie, R.

R. Xie, Z. Li, and X. Peng, “Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals,” J. Am. Chem. Soc.131(42), 15457–15466 (2009).
[CrossRef] [PubMed]

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Xu, J.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” J. Phys. Chem. B110(6), 2497–2501 (2006).
[CrossRef] [PubMed]

Xue, J.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011).
[CrossRef]

Yan, H.

Z. Deng, H. Yan, and Y. Liu, “Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc.131(49), 17744–17745 (2009).
[CrossRef] [PubMed]

Yang, C.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Yang, C. H.

Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
[CrossRef]

Yang, I.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Ye, M. F.

Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
[CrossRef]

Yen, B. K. H.

B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003).
[CrossRef]

Yoo, T. W.

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

Yoon, D. Y.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

Yoon, H.

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

Yu, K.

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

Yu, W. W.

L. Qu, W. W. Yu, and X. Peng, “In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals,” Nano Lett.4(3), 465–469 (2004).
[CrossRef]

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

Yu, Z.

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

Zaitseva, N.

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

Zamkov, M.

N. P. Gurusinghe, N. N. Hewa-Kasakarage, and M. Zamkov, “Composition-Tunable Properties of CdSxTe1−x Alloy Nanocrystals,” J. Phys. Chem. C112(33), 12795–12800 (2008).
[CrossRef]

Zentel, R.

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

Zhang, J.

X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
[CrossRef]

Zhang, Y.

X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
[CrossRef]

Zhang, Z.

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
[CrossRef]

Zhao, J.

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

Zhao, J. L.

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

Zheng, Y.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011).
[CrossRef]

Zhong, X.

X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
[CrossRef]

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
[CrossRef]

X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
[CrossRef] [PubMed]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003).
[CrossRef] [PubMed]

Zhou, Z.

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

Zhu, T.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Ziegler, K. J.

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

Zimmer, J. P.

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

Zorn, M.

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

Zou, J.

J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004).
[CrossRef]

Zou, L.

X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
[CrossRef]

Zunger, A.

S.-H. Wei and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals,” Appl. Phys. Lett.72(16), 2011–2013 (1998).
[CrossRef]

H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission,” Phys. Rev. B56(3), 1496–1508 (1997).
[CrossRef]

Acc. Chem. Res. (2)

P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res.44(1), 1–13 (2011).
[CrossRef] [PubMed]

M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nanocrystals,” Acc. Chem. Res.43(5), 621–630 (2010).
[CrossRef] [PubMed]

ACS Nano (3)

D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, and M. C. Beard, “Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity,” ACS Nano5(1), 183–190 (2011).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs,” ACS Nano3(11), 3581–3586 (2009).
[CrossRef] [PubMed]

M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, and K. Char, “Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices,” ACS Nano3(5), 1063–1068 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (2)

S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulović, “Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting,” Adv. Funct. Mater.15(7), 1117–1124 (2005).
[CrossRef]

Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, and Y. F. Li, “Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1−xS Alloyed Nanocrystals,” Adv. Funct. Mater.15(3), 433–441 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (11)

D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach,” Adv. Mater. (Deerfield Beach Fla.)17(2), 176–179 (2005).
[CrossRef]

Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)21(6), 661–664 (2009).
[CrossRef]

B. K. H. Yen, N. E. Stott, K. F. Jensen, and M. G. Bawendi, “A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1858–1862 (2003).
[CrossRef]

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution,” Adv. Mater. (Deerfield Beach Fla.)15(21), 1844–1849 (2003).
[CrossRef]

Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Q. Tian, M. S. Liu, J. L. Zhao, J. A. Bardecker, I. Jen-La Plante, D. S. Ginger, and A. K. Y. Jen, “Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3371–3376 (2007).
[CrossRef]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. (Deerfield Beach Fla.)21(17), 1690–1694 (2009).
[CrossRef]

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. (Deerfield Beach Fla.)23(39), 4521–4525 (2011).
[CrossRef] [PubMed]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H.-J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, “Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light-Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)21(48), 5022–5026 (2009).
[CrossRef]

A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D'Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Adv. Mater. (Deerfield Beach Fla.)20(10), 1886–1891 (2008).
[CrossRef]

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Adv. Mater. (Deerfield Beach Fla.)22(6), 673–685 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006).
[CrossRef] [PubMed]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (2)

A. L. Efros and M. Rosen, “The Electronic Structure Of Semiconductor Nanocrystals,” Annu. Rev. Mater. Sci.30(1), 475–521 (2000).
[CrossRef]

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci.30(1), 545–610 (2000).
[CrossRef]

Appl. Phys. Lett. (5)

S.-H. Wei and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals,” Appl. Phys. Lett.72(16), 2011–2013 (1998).
[CrossRef]

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet printing of light emitting quantum dots,” Appl. Phys. Lett.94(7), 073108 (2009).
[CrossRef]

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett.63(14), 2002–2004 (1993).
[CrossRef]

C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, “Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals,” Appl. Phys. Lett.90(3), 034107 (2007).
[CrossRef]

T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett.89(5), 053503 (2006).
[CrossRef]

Chem. Mater. (7)

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, “InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability,” Chem. Mater.23(20), 4459–4463 (2011).
[CrossRef]

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

A. L. Washington and G. F. Strouse, “Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots,” Chem. Mater.21(15), 3586–3592 (2009).
[CrossRef]

W. K. Bae, M. K. Nam, K. Char, and S. Lee, “Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1−xZnxS/ZnS Nanocrystals,” Chem. Mater.20(16), 5307–5313 (2008).
[CrossRef]

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine,” Chem. Mater.20(12), 3794–3796 (2008).
[CrossRef]

Chem. Rev. (2)

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev.105(4), 1025–1102 (2005).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

D. Vanmaekelbergh and P. Liljeroth, “Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals,” Chem. Soc. Rev.34(4), 299–312 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (22)

J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, “Highly luminescent silicon nanocrystals with discrete optical transitions,” J. Am. Chem. Soc.123(16), 3743–3748 (2001).
[CrossRef] [PubMed]

H. Liu, J. S. Owen, and A. P. Alivisatos, “Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis,” J. Am. Chem. Soc.129(2), 305–312 (2007).
[CrossRef] [PubMed]

R. Xie, Z. Li, and X. Peng, “Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals,” J. Am. Chem. Soc.131(42), 15457–15466 (2009).
[CrossRef] [PubMed]

J. S. Owen, E. M. Chan, H. Liu, and A. P. Alivisatos, “Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals,” J. Am. Chem. Soc.132(51), 18206–18213 (2010).
[CrossRef] [PubMed]

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

S.-M. Lee, Y. W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc.124(38), 11244–11245 (2002).
[CrossRef] [PubMed]

M. Shim and P. Guyot-Sionnest, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc.123(47), 11651–11654 (2001).
[CrossRef] [PubMed]

X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc.125(28), 8589–8594 (2003).
[CrossRef] [PubMed]

Z. Deng, H. Yan, and Y. Liu, “Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc.131(49), 17744–17745 (2009).
[CrossRef] [PubMed]

L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc.128(37), 12299–12306 (2006).
[CrossRef] [PubMed]

X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc.125(44), 13559–13563 (2003).
[CrossRef] [PubMed]

S.-W. Kim, J. P. Zimmer, S. Ohnishi, J. B. Tracy, J. V. Frangioni, and M. G. Bawendi, “Engineering InAsxP1−x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared,” J. Am. Chem. Soc.127(30), 10526–10532 (2005).
[CrossRef] [PubMed]

X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc.130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990).
[CrossRef]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc.125(41), 12567–12575 (2003).
[CrossRef] [PubMed]

Y.-M. Sung, Y.-J. Lee, and K.-S. Park, “Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals,” J. Am. Chem. Soc.128(28), 9002–9003 (2006).
[CrossRef] [PubMed]

R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc.125(23), 7100–7106 (2003).
[CrossRef] [PubMed]

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes,” J. Am. Chem. Soc.134(8), 3804–3809 (2012).
[CrossRef] [PubMed]

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124(9), 2049–2055 (2002).
[CrossRef] [PubMed]

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc.130(35), 11588–11589 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys.82(11), 5837–5842 (1997).
[CrossRef]

H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” J. Appl. Phys.83(12), 7965–7974 (1998).
[CrossRef]

M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” J. Appl. Phys.87(5), 2297–2302 (2000).
[CrossRef]

J. Chem. Phys. (1)

R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys.79(2), 1086–1088 (1983).
[CrossRef]

J. Disp. Technol. (1)

H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, “Inkjet Printed RGB Quantum Dot-Hybrid LED,” J. Disp. Technol.6(3), 87–89 (2010).
[CrossRef]

J. Lumin. (1)

X. Chen, A. Y. Nazzal, M. Xiao, Z. A. Peng, and X. Peng, “Photoluminescence from single CdSe quantum rods,” J. Lumin.97(3-4), 205–211 (2002).
[CrossRef]

J. Mater. Chem. (1)

J. W. Stouwdam and R. A. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” J. Mater. Chem.18(16), 1889–1894 (2008).
[CrossRef]

J. Phys. Chem. (3)

O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, “Synthesis and Characterization of InP Quantum Dots,” J. Phys. Chem.98(19), 4966–4969 (1994).
[CrossRef]

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem.100(2), 468–471 (1996).
[CrossRef]

Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, “Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles,” J. Phys. Chem.100(21), 8927–8939 (1996).
[CrossRef]

J. Phys. Chem. B (8)

D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals,” J. Phys. Chem. B108(49), 18826–18831 (2004).
[CrossRef]

X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1−xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength,” J. Phys. Chem. B108(40), 15552–15559 (2004).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” J. Phys. Chem. B108(45), 17393–17397 (2004).
[CrossRef]

J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” J. Phys. Chem. B110(6), 2497–2501 (2006).
[CrossRef] [PubMed]

M. A. Hines and P. Guyot-Sionnest, “Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals,” J. Phys. Chem. B102(19), 3655–3657 (1998).
[CrossRef]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110(2), 671–673 (2006).
[CrossRef] [PubMed]

D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, “Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study,” J. Phys. Chem. B105(49), 12278–12285 (2001).
[CrossRef]

J. Phys. Chem. C (3)

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C111(16), 5846–5849 (2007).
[CrossRef]

N. P. Gurusinghe, N. N. Hewa-Kasakarage, and M. Zamkov, “Composition-Tunable Properties of CdSxTe1−x Alloy Nanocrystals,” J. Phys. Chem. C112(33), 12795–12800 (2008).
[CrossRef]

J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. Wu, J. A. Ripmeester, and K. Yu, “Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach,” J. Phys. Chem. C112(13), 4908–4919 (2008).
[CrossRef]

J. Phys. Chem. Lett. (1)

T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller,” J. Phys. Chem. Lett.3(2), 214–218 (2012).
[CrossRef]

Langmuir (1)

W. Lin, K. Fritz, G. Guerin, G. R. Bardajee, S. Hinds, V. Sukhovatkin, E. H. Sargent, G. D. Scholes, and M. A. Winnik, “Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid),” Langmuir24(15), 8215–8219 (2008).
[CrossRef] [PubMed]

Nano Lett. (18)

D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, “Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots,” Nano Lett.2(7), 681–685 (2002).
[CrossRef]

D. Battaglia and X. Peng, “Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent,” Nano Lett.2(9), 1027–1030 (2002).
[CrossRef]

L. Qu, Z. A. Peng, and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

L. Qu, W. W. Yu, and X. Peng, “In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals,” Nano Lett.4(3), 465–469 (2004).
[CrossRef]

X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Lett.3(8), 1103–1106 (2003).
[CrossRef]

A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos, “The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations,” Nano Lett.4(12), 2361–2365 (2004).
[CrossRef]

J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Lett.4(7), 1181–1186 (2004).
[CrossRef]

D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Lett.1(4), 207–211 (2001).
[CrossRef]

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett.6(7), 1496–1501 (2006).
[CrossRef] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficieny full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. (to be published).
[PubMed]

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett.7(12), 3781–3786 (2007).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices,” Nano Lett.8(12), 4513–4517 (2008).
[CrossRef] [PubMed]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture,” Nano Lett.10(1), 24–29 (2010).
[CrossRef] [PubMed]

V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, “Electroluminescence from nanoscale materials via field-driven ionization,” Nano Lett.11(7), 2927–2932 (2011).
[CrossRef] [PubMed]

J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. K. Ding, J. Luo, B. Chen, A. K. Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer,” Nano Lett.6(3), 463–467 (2006).
[CrossRef] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett.10(7), 2368–2373 (2010).
[CrossRef] [PubMed]

Nanotechnology (2)

W. Ki Bae, J. Kwak, J. Lim, D. Lee, M. Ki Nam, K. Char, C. Lee, and S. Lee, “Deep blue light-emitting diodes based on Cd1−xZnxS @ ZnS quantum dots,” Nanotechnology20(7), 075202 (2009).
[CrossRef] [PubMed]

X. Zhong, Y. Feng, Y. Zhang, Z. Gu, and L. Zou, “A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction,” Nanotechnology18(38), 385606 (2007).
[CrossRef]

Nat. Photonics (5)

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008).
[CrossRef]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009).
[CrossRef]

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5(9), 543–548 (2011).
[CrossRef]

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics5(3), 176–182 (2011).
[CrossRef]

Nature (3)

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Org. Electron. (1)

S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003).
[CrossRef]

Phys. Rev. B (3)

P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Phys. Rev. B78(8), 085434 (2008).
[CrossRef]

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B60(19), 13740–13749 (1999).
[CrossRef]

H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission,” Phys. Rev. B56(3), 1496–1508 (1997).
[CrossRef]

Phys. Rev. B Condens. Matter (3)

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter54(7), 4843–4856 (1996).
[CrossRef] [PubMed]

D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16338–16346 (1996).
[CrossRef] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter53(24), 16347–16354 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, “Measurement of the size dependent hole spectrum in CdSe quantum dots,” Phys. Rev. Lett.72(16), 2612–2615 (1994).
[CrossRef] [PubMed]

Science (4)

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds, and G. S. Herman, “Low-temperature thin-film deposition and crystallization,” Science297(5578), 65 (2002).
[CrossRef] [PubMed]

SID Int. Symp. Digest Tech. Papers (1)

S. Coe-Sullivan, Z. Zhou, Y. Niu, J. Perkins, M. Stevenson, C. Breen, P. T. Kazlas, and J. S. Steckel, “12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications,” SID Int. Symp. Digest Tech. Papers42(1), 135–138 (2011).
[CrossRef]

Small (3)

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer,” Small4(12), 2143–2147 (2008).
[CrossRef] [PubMed]

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small5(2), 154–168 (2009).
[CrossRef] [PubMed]

M. Protière and P. Reiss, “Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range,” Small3(3), 399–403 (2007).
[CrossRef] [PubMed]

Soft Matter (2)

S. Alom Ruiz and C. S. Chen, “Microcontact printing: A tool to pattern,” Soft Matter3(2), 168–177 (2007).
[CrossRef]

E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter4(4), 703–713 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1

(a) The band structure for bulk semiconductor and nanocrystals with cubic lattice around k = 0. This illustration is reconstructed from reference [25]. (b) Atom-like S, P, and D orbitals of spherical semiconductor nanocrystals. Reprinted from reference [26] with permission. © 2009 American Chemical Society. (c) A schematic on building up of electrons in a strongly-confined QD (ES: single-electron energy level; EC: charging energy; Ee-e: Coulomb repulsion). This illustration is redesigned from reference [27].

Fig. 2
Fig. 2

(a) (left) A schematic on conventional hot-injection method for group II-VI QDs. (right) The temporal change in degree of supersaturation (The LaMer plot). Rapid injection of precursors (region I) results in sudden supersaturation over critical point, resulting in burst nucleation of QDs (region II). In following period, QDs grow to finite size (region III), depending on the reaction parameters. ((b) Size-dependent optical spectra for monodisperse CdSe QDs. (c) An absorption spectrum of CdSe QDs and the manifolds of excitonic states.

Fig. 3
Fig. 3

(a) An absorption and photoluminescence spectrum of CdS QDs. The trap emission is denoted as a red arrow. (b) Schematics on the effect of surface states on the recombination process. The band structure as a function of k and the other relaxation processes are omitted for the simplicity. If the surface states are not passivated (left, bare QDs), an electron at the conduction band edge can be trapped at the surface states, resulting in a broad and weak surface state emission or nonradiative decay. On the other hand, if the surface states are passivated by organic or inorganic shells, then the trap emission is eliminated and only band-edge emission is occurred.

Fig. 4
Fig. 4

Schematics on (a) a type-I bandgap configuration and (b) type-II bandgap configurations of core/shell QDs. The type-I bandgap configuration confines electron and hole wavefunctions in a same space, improving the recombination probability and it produces the band-edge emission. While the type-II bandgap configuration divides electron wavefunctions spatially, as a result, the probability on the radiative recombination is reduced and photon energy is the difference between the conduction (valence) band of core and valence (conduction) band of shell. (c) Electronic energy levels of several group II-VI, III-V, IV-VI, VI semiconductor materials using the valence-band offsets from reference [43,44].

Fig. 5
Fig. 5

(a) Absorption (dashed line) and PL (solid line) spectra of CdSe/CdS QDs with 30 Å of CdSe core. The increase in QE (or Q.Y., quantum yield) and of coverage of CdS with each injection is also depicted. (b) Schematic illustration of potentials (solid lines) and electronic energy levels (dashed lines) of core (top) and core/shell (bottom) QDs. “x” represents the absorption onset for a CdSe core of 34 Å diameter, “y” for a core/shell with a same core diameter and a 9 Å thick shell. The conduction band offset is 0.27 eV, while the valence band offset is 0.51 eV. (c) Photostability comparison of core and core/shell QDs (The shell thickness is 7 Å). Absorption spectra of core (top) and core/shell (bottom) samples before (solid) and after (dashed) continuous wave irradiation at 514 nm with an average power of 50 mW for approximately 2 h. The solutions were saturated with oxygen and had identical optical densities at the excitation wavelength at the start of the experiment. Reprinted with permission from reference [48]. © 1997 American Chemical Society.

Fig. 6
Fig. 6

(a) PL spectra of ZnS overcoated CdSe QDs with 42 ± 10% Å diameter. The spectra are for a) 0, b) 0.65, c) 1.3, d) 2.6 and e) 5.3 monolayers ZnS coverage. The spectra broaden with increasing ZnS coverage. The change in Q.Y. as a function of ZnS coverage is illustrated in an inset. Reprinted with permission from reference [53]. © 1997 American Chemical Society. (b) Z-STEM of CdSe/ZnS QDs with a QE of 34% (top). The signal from heavier core material and lighter shell material are colorized as yellow and red, respectively. The line profile shows the interface between core and shell clearly (bottom). A scale bar is 3 nm. Reprinted with permission from reference [55]. © 2006 American Chemical Society.

Fig. 7
Fig. 7

(a) i) schematics on the core-shell-shell QDs, ii) corresponding energy level diagram, and iii) relationship between bandgap energy and lattice parameter of bulk CdSe, ZnSe, CdS, and ZnS semiconductors with wurtzite phase. (b) PL QE of CdSe, CdSe/ZnSe, and CdSe/ZnSe/ZnS nanocrystals dissolved in chloroform at room temperature. For comparison, the dependence of PL QE on the shell thickness for various samples of CdSe/ZnS nanocrystals is shown. Reprinted with permission from reference [56]. © 2006 American Chemical Society.

Fig. 8
Fig. 8

(a) (left) STEM-EDS line scan along a single ~10 nm Zn0.6Cd0.4S0.5Se0.5 QDs, (middle) structural model of the QD lattice projected along the <001> orientation (cyan: Se, blue: S, red: Cd, green: Zn) and (right) composition-dependent photoluminescence spectra of ZnCdSSe QDs: 1 (0.90, 0.89), 2 (0.80, 0.71), 3 (0.69, 0.59), 4 (0.41,0.40), 5 (0.25, 0.24) and 6 (0.11, 0.10), where (x, y) is (Zn / (Cd + Zn), S / (S + Se) in QDs). Reprinted with permission from reference [69]. © 2009 American Chemical Society. (b) the bandgap of bulk materials (dashed line) and the emission peak of InAsxP1-x QDs as a function of arsenic content. Reprinted with permission from reference [64]. © 2005 American Chemical Society. (c) Calculated size- and composition-dependent bandgap of PbSxS1-x alloyed QDs. Bandgap in eV is notated on each contour line. Reprinted with permission from reference [70]. © 2010 American Chemical Society.

Fig. 9
Fig. 9

(a) A TEM image of CdSe QDs covered with 2 monolayers of CdS, 3.5 monolayers of Zn0.5Cd0.5S, and 2 monolayers of ZnS. (b) Reduction of the relative photoluminescence QE on repeated precipitation and redispersion of TOPO/ODA-covered CdSe cores and several ODA-covered core/shell particles in chloroform solution. (TOPO: trioctylphosphine oxide, ODA: octadecylamine) (c) Photochemical stability of QDs in oxygen saturated chloroform solutions under UV-irradiation. (top) Change in optical density of QD dispersion and (bottom) change in QE for CdSe core and different core/shell QDs. Reprinted with permission from reference [74]. © 2004 American Chemical Society.

Fig. 10
Fig. 10

(a) PL emission wavelengths and (b) QE of CdxZn1-xS/ZnS nanocrystals during heat treatment experiment. Blue arrows denote the increase in reaction temperature to 310 °C for the thermal treatment. (c) Schematics on the CdxZn1-xS/ZnS nanocrystals with (top) alloyed interface and (bottom) discrete interface. Reprinted with permission from reference [68]. © 2008 American Chemical Society.

Fig. 11
Fig. 11

(a) (left) Schematic on the possible reaction mechanism for the single-step synthesis of QDs with chemical composition gradient, (middle) probable chemical composition and (right) electronic energy level of QDs. (b) Ratio of (left) Cd (blue) or Zn (yellow) to (Cd + Zn) and (right) that of Se (purple) or S (green) to (Se + S) for each shell from the center of the QDs. (c) Room temperature photoluminescence for different QDs prepared by the single-step synthesis. Reprinted with permission from reference [76]. © 2008 American Chemical Society.

Fig. 12
Fig. 12

The CIE (Commission Internationale de l’Eclairage) 1931 chromaticity diagram of hypothetical QDs emitting 420, 450, 470, 490, 510, 530, 550, 570, 590, 610, 630 and 650 nm (from the left) with 20 nm (red dot), 30 nm (green square) or 50 nm (blue triangle) of FWHM. NTSC 1987 (solid line) and 1953 (dashed line) color gamut are also illustrated. The emission spectra of QDs are assumed as Gaussian shape.

Fig. 13
Fig. 13

Schematics on simplified device structures of (a) an electroluminescence device and (b) a down-conversion device based on QDs.

Fig. 14
Fig. 14

Schematics on the energy diagrams of QD-LEDs reported. (a) A bilayer system consisting of a HTL and a QD layer. (b) The introduction of ETL between a QD layer and a cathode. (c) The insertion of a hole injection layer (HIL) in the middle of a transparent conducting oxide (TCO) and a HTL.

Fig. 15
Fig. 15

(a) EL spectra and device structures of two kinds of QD-LEDs without TAZ layer (left) and with TAZ (right) as a hole-blocking layer. Dashed lines represent the deconvolution of the EL spectra into Alq3 and QD components. The QDs used are illustrated in the inset that is composed of CdSe core (~38 Å in diameter) coated with 1.5 monolayers of ZnS. PL QE was 22 ± 2%. (b) An AFM phase image of a complete, hexagonally packed QD monolayer segregated from an underlying TPD layer. Grain boundaries between ordered domains of QDs are shown. (c) A proposed energy level diagram of an EL device shown on the left of (a). Reprinted with permission from reference [89]. © 1998 Nature Publishing Group.

Fig. 16
Fig. 16

(a) Energy levels of materials involved in the QD-LEDs ITO/PEDOT:PSS/polyTPD/QD multilayer/Alq3/Ca/Al. (b) EL spectra of red emitting QD-LEDs as a function of operation voltage with the device structure illustrated in (a). The inset shows the image of a large-area device under operation. (c) Luminous efficiency and power efficiency of the QD-LED as a function of luminance. Reprinted with permission from reference [93]. © 2007 Nature Publishing Group. (d) UV-vis and PL spectra of QDs, EL spectrum of a QD-LED (ITO/PEDOT:PSS/QD(green) multilayer/TPBi/LiF/Al) and a photograph of a QD-LED with a pixel size of 1.4 mm x 3.65 mm (turn-on voltage: 3.5 V, luminous efficiency: 5.2 Cd/A, maximum brightness: 10,000 cd/m2) Reprinted with permission from reference [96]. © 2009 Wiley-VCH. (e) Normalized PL spectra (dashed line) and EL spectra (solid line) of QD-LEDs (ITO/PEDOT:PSS/polyTPD:CBP/QD(blue) multilayer /TPBi/LiF/Al). The QD-LED pixel with 1.4 mm x 3.65 mm (left top) and CIE chromaticity color indices of QD-LEDs (right) are also shown in the insets. Reprinted with permission from reference [97]. © 2009 Institute of Physics. (f) (top) Composite photographs of 0.6 x 1.9 mm2 QD-LED pixels for blue, skyblue, green, orange, and red. (bottom) PL spectra (dashed lines) of QD monolayers for red, orange, and green QDs and QDs in hexane solution for blue and skyblue QDs due to lack of absorption of blue and skyblue QD monolayers at wavelengths over 350 nm and EL spectra (solid lines) of QD-LEDs (device structure: ITO/PEDOT:PSS/spiro-TPD/QD monolayer/TPBi/Mg:Ag/Ag). Reprinted with permission from reference [98]. © 2009 American Chemical Society.

Fig. 17
Fig. 17

(a) A schematic on the device structure and (b) a band diagram determined from UV photoemission spectroscopy and optical absorption measurements, denoting approximate electron affinities and ionization energies of QD-LED materials. (c) Electroluminescence spectra of the QD-LED of (a) at 6 V (0.46 A/cm2) and 9 V (1.14 A/cm2) applied bias. (d) EQE measured from the front face of the device as a function of current density, J. The maximum EQE of 0.09% and a luminance of 1,500 cd/m2 were reached at 13.8 V and 2.33 A/cm2. The inset shows a photograph of a bright and uniform pixel at 6 V applied bias. Reprinted with permission from reference [102]. © 2008 Nature Publishing Group.

Fig. 18
Fig. 18

(a) Energy level diagram of QD-LEDs based on sol-gel processed TiO2 ETL. (b) Current density (J) versus voltage (V) characteristics of the QD-LEDs. A QD-LED with TiO2 ETL depicted in (a) (black solid line), a QD-LED with Alq3 as the ETL (blue broken line), and a reference, TiO2-based QD-LED without QD layer (red broken line). Three different conduction regimes are apparent in the reference device (ohmic, trap-limited, and space-charge-limited conduction) whereas the other devices show partial (for the TiO2-based QD-LED) or no change (for the Alq3-based Qd-LED) from trap- to space-charge-limited conduction due to large trap densities. The device turn-on voltage of the Alq3-based QD-LED is larger (4.0 V) than the TiO2-based QD-LED (1.9 V). (c) Luminous efficiency, EQE, and power efficiency as a function of luminance. (d) A display image of 4-inch crosslinked QD-LED using an amorphous-Si thin film transistor backplane with a 320 x 240 pixel array for the active matrix drive. The upper right inset is an image of light emission from all pixels under operation at 500 cd/m2 and the lower right inset shows each pixel. Scale bar is 100 μm. Reprinted with permission from reference [104]. © 2011 Nature Publishing Group. (e) Energy level diagram for ITO/PEDOT:PSS/polyTPD/QD multilayer/ZnO NCs/Al. (f) EL spectra of blue, green, red-orange QD-LEDs with photographs (inset). Reprinted with permission from reference [106]. © 2011 Nature Publishing Group.

Fig. 19
Fig. 19

(a) Energy band diagram of inverted QD-LEDs, where electrons are injected from ITO and holes are injected from Al. (b) Maximum EQEs of red, green, and blue QD-LEDs using various HTLs with different HOMO energy levels. Higher EQEs were obtained as the HOMO energy level of HTL is close to the valence band of QDs. (c) EQE versus current density of red, green, and blue QD-LEDs with CBP as a HTL. (d) The lifetime characteristics of red QD-LEDs with standard (ITO/PEDOT:PSS/polyTPD/QD multilayer/TPBi/LiF:Al) and inverted device structure (ITO/ZnO/QD multilayer/CBP/MoO3/Al). (e) Photographs of red, green, and blue QD-LEDs (with the emitting area of 1.2 cm x 1.2 cm) at applied voltages of 2.6 ~3.3 V displayed in the inset. Reprinted with permission from reference [108]. © 2012 American Chemical Society.

Fig. 20
Fig. 20

(a) A schematic diagram of QD/poly(p-methyltriphenylamine-b-cysteamine acrylamide) (PTPA-b-CAA) hybrids. (b) The energy band diagram of QD-LEDs employing QD/PTPA-b-CAA hybrid emissive layers. (c) Normalized EL spectra of QD-LEDs including QD/PTPA-b-CAA hybrid emissive layers with different QD contents (0.5, 1.0, 1.5, 2.0, and 2.5 wt% for H1, H2, H3, H4, and H5). (inset) Magnified EL spectra from 440 nm to 480 nm. EL spectra were measured at a current density of 150 mA/cm2. (d) (left) Plan-view and (right) cross-sectional TEM images of (top) QD/PTPA-b-CAA hybrid and (bottom) QD/PTPA-b-PFP blend films spun-cast with solutions containing 1 wt% polymers and 2.5 wt% QDs. (e) Cross-sectional TEM images of (top) a drop-cast QD/PTPA-b-CAA hybrid film and (bottom) a QD/PTPA-b-PFP blend film. (f) A fluorescence microscopy image of a QD/PTPA-b-CAA hybrid film with regular hole patterns (hole diameter: 1 μm, hole distance: 0.3 μm) prepared by the capillary force lithography. Reprinted with permission from reference [110]. © 2009 Wiley-VCH.

Fig. 21
Fig. 21

(a) A schematic on the preparation of all-QD multilayer films fabricated by spin-assisted layer-by-layer assembly. (b) Energy band diagram of QD-LEDs based on ITO/PAH (anode)/all-QD multilayer film/TPBi (ETL)/ LiF/Al (cathode). (c) (left) A schematic on the device structure and (right) an EL spectrum showing emitting QD layers (green QD layers) adjacent to the top TPBi layer. The inset shows an image of the QD-LED and corresponding CIE indices of the EL spectra. (d) (left) Fabrication scheme and (right) a photograph of a QD-LED exhibiting multiple colors (green, orange, and red) in a unit device (pixel size of 1.4 x 1.4 mm2). Reprinted with permission from reference [112]. © 2010 American Chemical Society.

Fig. 22
Fig. 22

(a) An absorption spectrum of unipolar device: ITO/ZTO (40 nm)/QD multilayer/ZTO (15 nm)/ZnS (30 nm)/ZTO (40 nm)/ITO, where ZTO is composed of ZnO:SnO2. The inset photograph shows the device on top of text to demonstrate the transparency of wide bandgap ceramics and a thin QD layer. (b) A photograph of device operation at 18 V, demonstrating the uniformity of pixel illumination as well as device transparency. (c) A schematic band diagram of device structure in (a) under forward bias condition. (d) EQE plotted against absolute value of current density for two device structures, where the device ① is the same as (a) and the device ② is composed of ITO/ZTO (40 nm)/QD multilayer/ZTO (40 nm)/ITO. Reprinted with permission from reference [115]. © 2009 American Chemical Society.

Fig. 23
Fig. 23

Progress in peak EQEs of QD-LEDs against time. The EQEs are classified into six colors in terms of red (770 nm ~620 nm), orange (620 nm ~580 nm), yellow (580 nm ~570 nm), green (570 nm ~510 nm), cyan (510 nm ~490 nm), and blue (490 nm ~430 nm) to give clear and fair comparison.

Fig. 24
Fig. 24

(a) A schematic on the four-step contact printing process. (b) AFM images of a QD film deposited on top of TPD layer using (left) a plain PDMS stamp and (right) a parylene-C coated PDMS stamp. A QD film on a plain PDMS exhibit spinoidal decomposition patterns with high surface roughness (RMS roughness = 23.0 nm) while a smooth hexagonally close-packed monolayer is formed on the parylene-C-coated PDMS stamp (RMS roughness = 0.5 nm). The chemical structure of parylene-C is shown in the inset. (c) (upper left) An EL of red and green pixels fabricated on the same substrate. A blue pixel is the result of TPD emission in the area where QDs were not deposited. (upper right) An EL of red QDs patterned with 25 μm wide stamp features. (bottom) Device structure of a QD-LED with an emissive layer consisting of 25 μm wide cross-stripes of green and red QD monolayers. (d) An EL of the device structure shown in (c) at 7 V of applied bias. Blue emission is due to emission from the TPD hole-transporting underlayer. The background TPD emission is not present in the image (c) due to lower applied bias. Reprinted with permission from reference [118]. © 2008 American Chemical Society.

Fig. 25
Fig. 25

(a) A schematic illustration of solvent-free transfer printing. Briefly, (i) a donor substrate was modified with octadecyltriclorosilane (ODTS) to facilitate the delamination of QD multilayer. Then, (ii) red, green, and blue QD multilayers spin-coated were (iii) peeled off from the donor substrate using PDMS stamps and (iv-viii) they were transferred to conducting substrates with precise alignments. (right bottom) A photoluminescence image of the transfer-printed RGB QD stripes on a glass substrate excited at 365 nm UV irradiation. (b) (left) QD pick-up yield as a function of peeling velocity during lift-off of the stamp. The error bars are the standard deviation in the pick-up yields measured at various pressures. (inset) A fluorescence micrograph of QD stripes transferred onto a glass substrate, excited at 365 nm UV light. (right) A SEM image of nanopatterend QD stripes printed on a glass substrate by a microstructured stamp. (c) A 4-inch full-color QD display with a 320 x 240 pixel array. Reprinted with permission from reference [121]. © 2011 Nature Publishing Group.

Fig. 26
Fig. 26

(a) (left) An AFM height image (500 nm) of printed QD layer. The peak-to-valley height of 5.22 nm indicates no significant aggregation. (inset) A white line in the image shows the location of the section scan. (right) An AFM phase image of (a). Reprinted with permission from reference [128]. © 2009 American Institute of Physics. (b) A RGB spectrum measured at 10 V. The overall device area is 0.14 cm2 with both ITO and metal as common electrodes to all array elements. (inset) A photograph showing strong emission from red pixels with overshadowed emissions from remaining G and B pixels. Reprinted with permission from reference [117]. © 2010 IEEE.

Metrics