Abstract

Quantum dots and their chemical adaptation for various photonic applications are presented in this review. The use of quantum dots as photoactive components in many applications requires their combination with other materials playing specific roles for separation and transport of charge carriers. Achieving good interfaces between electronically matched component materials is key to improved performance in photodetectors, photovoltaics, electroluminescence application, etc.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics, 1st ed. (John Wiley & Sons, New Jersey, 2004).
  2. A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem.44(20), 6893–6899 (2005).
    [CrossRef] [PubMed]
  3. A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
    [CrossRef]
  4. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
    [CrossRef] [PubMed]
  5. A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
    [CrossRef]
  6. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
    [CrossRef] [PubMed]
  7. S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006).
    [CrossRef] [PubMed]
  8. H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
    [CrossRef] [PubMed]
  9. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
    [CrossRef] [PubMed]
  10. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
    [CrossRef]
  11. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
    [CrossRef] [PubMed]
  12. L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
    [CrossRef]
  13. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
    [CrossRef]
  14. J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
    [CrossRef] [PubMed]
  15. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater.15(21), 1844–1849 (2003).
    [CrossRef]
  16. J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
    [CrossRef] [PubMed]
  17. Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
    [CrossRef] [PubMed]
  18. L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett.1(6), 333–337 (2001).
    [CrossRef]
  19. W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
    [CrossRef] [PubMed]
  20. W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008).
    [CrossRef]
  21. J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
    [CrossRef] [PubMed]
  22. J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
    [CrossRef]
  23. J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
    [CrossRef]
  24. A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” J. Am. Chem. Soc.124(30), 8812–8813 (2002).
    [CrossRef] [PubMed]
  25. K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
    [CrossRef]
  26. S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008).
    [CrossRef]
  27. N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
    [CrossRef]
  28. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
    [CrossRef] [PubMed]
  29. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
    [CrossRef] [PubMed]
  30. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
    [CrossRef] [PubMed]
  31. D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005).
    [CrossRef]
  32. D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science310(5745), 86–89 (2005).
    [CrossRef] [PubMed]
  33. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
    [CrossRef] [PubMed]
  34. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
    [CrossRef] [PubMed]
  35. J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
    [CrossRef] [PubMed]
  36. J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011).
    [CrossRef] [PubMed]
  37. A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
    [CrossRef]
  38. J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
    [CrossRef]
  39. T. J. Bukowski and J. H. Simmons, “Quantum dot research: current state and future prospects,” Crit. Rev. Solid State Mater. Sci.27(3-4), 119–142 (2002).
    [CrossRef]
  40. R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
    [CrossRef]
  41. M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
    [CrossRef] [PubMed]
  42. C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
    [CrossRef]
  43. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
    [CrossRef] [PubMed]
  44. J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
    [CrossRef] [PubMed]
  45. S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
    [CrossRef]
  46. M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys.100(7), 074510 (2006).
    [CrossRef]
  47. V. I. Klimov, “Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication,” Appl. Phys. Lett.89(12), 123118 (2006).
    [CrossRef]
  48. S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009).
    [CrossRef]
  49. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications: Materials (Springer Verlag, 2007), Vol. 2.
  50. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
    [CrossRef]

2012

A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
[CrossRef]

2011

J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
[CrossRef] [PubMed]

J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011).
[CrossRef] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

2010

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

2009

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009).
[CrossRef]

2008

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
[CrossRef]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
[CrossRef]

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008).
[CrossRef]

2007

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

2006

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys.100(7), 074510 (2006).
[CrossRef]

V. I. Klimov, “Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication,” Appl. Phys. Lett.89(12), 123118 (2006).
[CrossRef]

K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
[CrossRef]

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006).
[CrossRef] [PubMed]

2005

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem.44(20), 6893–6899 (2005).
[CrossRef] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005).
[CrossRef]

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science310(5745), 86–89 (2005).
[CrossRef] [PubMed]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

2004

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

2003

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater.15(21), 1844–1849 (2003).
[CrossRef]

2002

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” J. Am. Chem. Soc.124(30), 8812–8813 (2002).
[CrossRef] [PubMed]

T. J. Bukowski and J. H. Simmons, “Quantum dot research: current state and future prospects,” Crit. Rev. Solid State Mater. Sci.27(3-4), 119–142 (2002).
[CrossRef]

2001

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

1999

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
[CrossRef]

1996

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
[CrossRef]

Afzali, A.

A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” J. Am. Chem. Soc.124(30), 8812–8813 (2002).
[CrossRef] [PubMed]

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Anikeeva, P. O.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

Aoki, K.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

Arakawa, Y.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

Arya, H.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

Bae, W. K.

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

Banin, U.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Bawendi, M.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

Bawendi, M. G.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

Beard, M. C.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

Bradley, D. D. C.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Breen, T. L.

A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” J. Am. Chem. Soc.124(30), 8812–8813 (2002).
[CrossRef] [PubMed]

Bukowski, T. J.

T. J. Bukowski and J. H. Simmons, “Quantum dot research: current state and future prospects,” Crit. Rev. Solid State Mater. Sci.27(3-4), 119–142 (2002).
[CrossRef]

Bulovic, V.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

Campoy-Quiles, M.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Carbone, L.

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

Cartwright, A. N.

J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
[CrossRef] [PubMed]

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009).
[CrossRef]

S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
[CrossRef]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008).
[CrossRef]

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

Chang, L.

A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
[CrossRef]

Char, K.

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

Cho, M. J.

J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
[CrossRef] [PubMed]

Cho, N.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

Choudhury, K. R.

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
[CrossRef]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Cingolani, R.

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

Coe, S.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

Colvin, V. L.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Cui, Y.

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

Cunningham, B. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

De Vittorio, M.

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

Dimitrakopoulos, C. D.

A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” J. Am. Chem. Soc.124(30), 8812–8813 (2002).
[CrossRef] [PubMed]

Dittmer, J. J.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Drndic, M.

D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005).
[CrossRef]

Ellingson, R. J.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

Falkner, J. C.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Ferenczi, T. A. M.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Fischbein, M.

D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005).
[CrossRef]

Friend, C. S.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
[CrossRef]

Fromer, N. A.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Frost, J. M.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Geier, M. L.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Guimard, D.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

Gur, I.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Halpert, J. E.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

Hanna, M. C.

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys.100(7), 074510 (2006).
[CrossRef]

He, G. S.

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

Hines, M. A.

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater.15(21), 1844–1849 (2003).
[CrossRef]

Hirano, T.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

Hughes, B. K.

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

Hur, H.

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

Hur, J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Huynh, W. U.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Iwamoto, S.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

Jang, E.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006).
[CrossRef] [PubMed]

Jang, J.

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

Jang, K. K.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Jasieniak, J.

J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011).
[CrossRef] [PubMed]

Javidi, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
[CrossRef]

Johnson, J. C.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Jun, S.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006).
[CrossRef] [PubMed]

Kan, S.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Kaul, S. C.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

Kaul, Z.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

Kazes, M.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Kim, J.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006).
[CrossRef] [PubMed]

Kim, J. S.

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

Kim, J.-M.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Kim, S. J.

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009).
[CrossRef]

S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
[CrossRef]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008).
[CrossRef]

Kim, T.-D.

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

Kim, W. J.

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009).
[CrossRef]

S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
[CrossRef]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008).
[CrossRef]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
[CrossRef]

Kippelen, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
[CrossRef]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, “Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication,” Appl. Phys. Lett.89(12), 123118 (2006).
[CrossRef]

Knutsen, K. P.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

Konstantatos, G.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Lal, M.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
[CrossRef]

Law, M.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

Lee, D.

J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
[CrossRef] [PubMed]

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

Lee, J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Lee, K.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Lee, K.-S.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
[CrossRef]

Lee, S.

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

Lee, Y.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Levina, L.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Luque, A.

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

MacDonald, B. I.

J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011).
[CrossRef] [PubMed]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Martí, A.

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

Martiradonna, L.

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Medvedev, V.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Meerholz, K.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
[CrossRef]

Metzger, W. K.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

Moulé, A. J.

A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
[CrossRef]

Müller, C.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Mulvaney, P.

J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011).
[CrossRef] [PubMed]

Murray, C. B.

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science310(5745), 86–89 (2005).
[CrossRef] [PubMed]

Nelson, J.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Nishioka, M.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

Nomura, M.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

Nozik, A. J.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
[CrossRef]

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys.100(7), 074510 (2006).
[CrossRef]

A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem.44(20), 6893–6899 (2005).
[CrossRef] [PubMed]

Ohulchanskyy, T.

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

Park, J.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006).
[CrossRef] [PubMed]

Park, J.-J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Peng, X.

L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

Peng, Z. A.

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

Perkins, C. L.

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

Peyghambarian, N.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
[CrossRef]

Prabhakaran, P.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Prasad, P. N.

J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
[CrossRef] [PubMed]

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009).
[CrossRef]

S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
[CrossRef]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008).
[CrossRef]

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
[CrossRef]

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
[CrossRef]

Qi, D.

D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005).
[CrossRef]

Qu, L.

L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

Qualtieri, A.

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

Roy Choudhury, K.

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

Sahoo, Y.

S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
[CrossRef]

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
[CrossRef]

Samoc, M.

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

Sargent, E. H.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Scholes, G. D.

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater.15(21), 1844–1849 (2003).
[CrossRef]

Selmic, S.

D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005).
[CrossRef]

Seo, J.

J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
[CrossRef] [PubMed]

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

Shih, B. S.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Shukla, S.

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

Simmons, J. H.

T. J. Bukowski and J. H. Simmons, “Quantum dot research: current state and future prospects,” Crit. Rev. Solid State Mater. Sci.27(3-4), 119–142 (2002).
[CrossRef]

Singh, R.

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Smith, P.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Son, Y.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Song, Q.

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

Stingelin-Stutzmann, N.

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Stomeo, T.

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

Stroeve, P.

A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
[CrossRef]

Taira, K.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

Talapin, D. V.

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science310(5745), 86–89 (2005).
[CrossRef] [PubMed]

Tessler, N.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Thambidurai, C.

A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
[CrossRef]

Thapa, R.

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

Thapa, R. B.

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

Vidu, R.

A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
[CrossRef]

Volodin, B. L.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
[CrossRef]

Wadhwa, R.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

Watkins, S. E.

J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011).
[CrossRef] [PubMed]

Winiarz, J. G.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
[CrossRef]

Woo, W.-K.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

Yang, D.-Y.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

Yong, K.-T.

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

Yoon, H.

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

Yu, P.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

Yu, W. W.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Zhang, L.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
[CrossRef]

Zhang, S.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

Adv. Mater.

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater.15(21), 1844–1849 (2003).
[CrossRef]

N. Cho, K. Roy Choudhury, R. B. Thapa, Y. Sahoo, T. Ohulchanskyy, A. N. Cartwright, K.-S. Lee, and P. N. Prasad, “Efficient photodetection at IR wavelengths by incorporation of PbSe–carbon nanotube conjugates in a polymeric nanocomposite,” Adv. Mater.19(2), 232–236 (2007).
[CrossRef]

J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Adv. Mater.23(34), 3984–3988 (2011).
[CrossRef] [PubMed]

C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, “Binary organic photovoltaic blends: a simple rationale for optimum compositions,” Adv. Mater.20(18), 3510–3515 (2008).
[CrossRef]

Appl. Phys. Lett.

S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Appl. Phys. Lett.92(3), 031107 (2008).
[CrossRef]

R. Thapa, K. R. Choudhury, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, “Polymeric nanocomposite infrared photovoltaics enhanced by pentacene,” Appl. Phys. Lett.90(25), 252112 (2007).
[CrossRef]

V. I. Klimov, “Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication,” Appl. Phys. Lett.89(12), 123118 (2006).
[CrossRef]

D. Qi, M. Fischbein, M. Drndic, and S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors,” Appl. Phys. Lett.86(9), 093103 (2005).
[CrossRef]

K. R. Choudhury, W. J. Kim, Y. Sahoo, K.-S. Lee, and P. N. Prasad, “Solution-processed pentacene quantum-dot polymeric nanocomposite for infrared photodetection,” Appl. Phys. Lett.89(5), 051109 (2006).
[CrossRef]

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell,” Appl. Phys. Lett.92(19), 191107 (2008).
[CrossRef]

J. Zhu, W. J. Kim, G. S. He, J. Seo, K.-T. Yong, D. Lee, A. N. Cartwright, Y. Cui, and P. N. Prasad, “Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecom- munication wavelength,” Appl. Phys. Lett.97(26), 263108 (2010).
[CrossRef]

J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Appl. Phys. Lett.94(13), 133302 (2009).
[CrossRef]

Biochem. Biophys. Res. Commun.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun.329(4), 1173–1177 (2005).
[CrossRef] [PubMed]

Chem. Mater.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

W. K. Bae, K. Char, H. Hur, and S. Lee, “Single-step synthesis of quantum dots with chemical composition gradients,” Chem. Mater.20(2), 531–539 (2008).
[CrossRef]

Chem. Phys. Lett.

A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
[CrossRef]

Chem. Rev.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Crit. Rev. Solid State Mater. Sci.

T. J. Bukowski and J. H. Simmons, “Quantum dot research: current state and future prospects,” Crit. Rev. Solid State Mater. Sci.27(3-4), 119–142 (2002).
[CrossRef]

Inorg. Chem.

A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem.44(20), 6893–6899 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc.123(1), 183–184 (2001).
[CrossRef] [PubMed]

A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” J. Am. Chem. Soc.124(30), 8812–8813 (2002).
[CrossRef] [PubMed]

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, “Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines,” J. Am. Chem. Soc.130(18), 5974–5985 (2008).
[CrossRef] [PubMed]

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic−inorganic nanocomposite,” J. Am. Chem. Soc.121(22), 5287–5295 (1999).
[CrossRef]

J. Appl. Phys.

M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” J. Appl. Phys.100(7), 074510 (2006).
[CrossRef]

J. Mater. Chem.

A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” J. Mater. Chem.22(6), 2351–2368 (2012).
[CrossRef]

J. Nanosci. Nanotechnol.

J. S. Kim, W. J. Kim, N. Cho, S. Shukla, H. Yoon, J. Jang, P. N. Prasad, T.-D. Kim, and K.-S. Lee, “Synthesis and properties of quantum dot-polypyrrole nanotube composites for photovoltaic application,” J. Nanosci. Nanotechnol.9(12), 6957–6961 (2009).
[CrossRef] [PubMed]

Langmuir

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir22(6), 2407–2410 (2006).
[CrossRef] [PubMed]

MRS Bull.

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

Nano Lett.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett.9(7), 2532–2536 (2009).
[CrossRef] [PubMed]

L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett.1(6), 333–337 (2001).
[CrossRef]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett.8(10), 3262–3265 (2008).
[CrossRef] [PubMed]

J. Jasieniak, B. I. MacDonald, S. E. Watkins, and P. Mulvaney, “Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly,” Nano Lett.11(7), 2856–2864 (2011).
[CrossRef] [PubMed]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett.10(7), 2310–2317 (2010).
[CrossRef] [PubMed]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett.7(8), 2506–2512 (2007).
[CrossRef] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in films of electronically coupled PbSe quantum dots,” Nano Lett.7(6), 1779–1784 (2007).
[CrossRef] [PubMed]

Nanotechnology

J. Seo, S. J. Kim, W. J. Kim, R. Singh, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology20(9), 095202 (2009).
[CrossRef] [PubMed]

Nat. Mater.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Nat. Nanotechnol.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Nat. Photonics

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008).
[CrossRef]

Nature

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature420(6917), 800–803 (2002).
[CrossRef] [PubMed]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature383(6595), 58–60 (1996).
[CrossRef]

Science

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science310(5745), 86–89 (2005).
[CrossRef] [PubMed]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005).
[CrossRef] [PubMed]

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

L. Martiradonna, A. Qualtieri, T. Stomeo, L. Carbone, R. Cingolani, and M. De Vittorio, “Lithographic nano-patterning of colloidal nanocrystal emitters for the fabrication of waveguide photonic devices,” Sens. Actuators B Chem.126(1), 116–119 (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells

S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, “Self-passivating hybrid (organic/inorganic) tandem solar cell,” Sol. Energy Mater. Sol. Cells93(5), 657–661 (2009).
[CrossRef]

Other

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications: Materials (Springer Verlag, 2007), Vol. 2.

P. N. Prasad, Nanophotonics, 1st ed. (John Wiley & Sons, New Jersey, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The synthetic route of methacrylate functionalized photopatternable (CdSe@ZnS) QDs.

Fig. 2
Fig. 2

Scheme for synthesis of (a) SWNT-PbSe and (b) PPyNT-PbSe ((a) was redrawn from [27] and (b) reprinted with permission from [14]).

Fig. 3
Fig. 3

Negative photopatterns of (a)-(c) CdTe, CdSe and PbSe QD respectively obtained by UV photo-exposure through a mask in presence of a photoacid generator, inset of (a) shows 5 μm circles patterened from CdTe QDs (d) shows the structure of the MSM device (e) photo response of MSM detector with increasing electric field, dark current (black line) corresponds to the current when there is no illumination, the red broken lines represent the response of the device containing un-exposed QD films under illumination, the blue dotted line show the enhancement of photocurrent under illumination when the active QD layer is photocured (Reprinted with permission from [19]).

Fig. 4
Fig. 4

(a) and (b) show the patterning of PPQDs on ITO glass and flexible PET substrate respectively, the patterns are excited at 365 nm, the prominent fluorescence of the PET film in this region of the spectrum causes the green fluorescent QD patterns to appear blue. (c) The EL efficiency of an electroluminescent device fabricated with photopatternable QDs stabilized by methacrylate terminated ligands: there is an increase in EL intensity of the device when the QD layer is photocured during device fabrication, the inset shows the structure of the fabricated device. (d) the normalized emission intensity of the device whose QDs layer is photocured and that with QD layer containing no photocuring. There is a clear distinction between the green emissions of the QD and that of ETL material tris(8-hydroxyquinoline) aluminum(III) (Alq3) as shown in inset 1, the second inset shows the picture of a working device. (e) shows the Scanning electron microscopy (SEM) image of a polymeric pattern embedded with PPQDs (f) the confocal microscopy image PPQD embedded polymeric structures (Reprinted with permission from [21]).

Fig. 5
Fig. 5

(a) Photocurrent density as a function of pentacene concentration at the operating wavelength of 1340 nm. The brackets indicate the ratio of PVK to pentacene. (b) Current density–voltage curves display the performance of the photovoltaic device with pentacene (triangles) and without pentacene (circles) under AM 1.5G Solar Simulator (60 mW/cm2). Inset I-V curves indicate near infrared photocurrent response of the same devices, when the devices illuminated with IR part of the solar spectrum by placing a 750 nm long pass filter (Reprinted with permission from [25,40]).

Fig. 6
Fig. 6

(a) Current-Voltage curve displays improved photovoltaic response of the photovoltaic devices consisting of ITO/PEDOT:PSS/P3HT:PbS (10:90 wt %)/Al due to post chemical treatment and (b) time-resolved photoluminescence showing improved charge transfer (Reprinted with permission from [16]).

Fig. 7
Fig. 7

(a) Current density-voltage curves display enhanced photovoltaic response by heat treatment of the photovoltaic devices consisting of ITO/PEDOT:PSS/P3HT:CdSe-t-BOC (10:90 wt %)/Al. The inset shows the schematic diagram of the thermal deprotection process. (b) Summary of device performance in the same device structures as a function of different heating temperatures for t-BOC deprotection (Reprinted with permission from [23]).

Fig. 8
Fig. 8

(a) Representative absorption spectra of synthesized PbSe nanocrystals. (b) Device structure of a photoconductor and SEM image of the PbSe thin films. (c) Normalized extracted electrons/photon for the photoconductor reported recently by our group, plotted with the normalized generated excitons/photon reported by the Nozik and Klimov groups (Reprinted with permission from [45]).

Fig. 9
Fig. 9

(a) Hybrid tandem solar cell consisting of a PbSe nanocrystal thin film and an organic (P3HT:PCBM) solar cell. Band energy alignment is shown on the top. (b) Comparison of a polymer solar cell to the hybrid tandem solar cell under intense UV illumination. Optimization of the PbSe layer will result in higher efficiencies and longer lifetimes (Reprinted with permission from [26,48]).

Fig. 10
Fig. 10

(a)The I–V characteristics of PbSe-QD/PVK as well as SWNT–PbSe/PVK devices in the dark and under illumination, illustrating the enhancement of photocurrent in the IR region with increasing percentage content of SWNT–PbSe. Inset: structure of the IR photodetector device employed in this study, (b) I–V characteristics of PPyNT-PbSe (Reprinted with permission from [14,27]).

Fig. 11
Fig. 11

(a) Two beam coupling (TBC) experiments for studying the photorefractive effect of t-BOC functionalized PbS QD polymer nanocomposites (b) shows the variation of two beam coupling gain coefficient Γ with increasing electric field. Diamond markers represent the data for oleic acid stabilized PbS QDs, circular markers show that of t-BOC functionalized QDs treated at 100 °C, and the triangular markers represent the values obtained for t-BOC functionalized QDs treated at 200 °C. There is marked improvement in the gain coefficient with the thermal degradation of the QDs at 200 °C. (Reprinted with permission from [22].)

Metrics