Abstract

We numerically investigate and experimentally demonstrate a new route to controllably manipulate the spontaneous decay rate of dipole emitters in coupled plasmonic modes. The structure under investigation is an hexagonal close-packed array of gold core - silica shell nanoparticles (NPs) sandwiched between two gold films. We show that the interaction of localized and propagating surface plasmon polaritons can dramatically enhance the spontaneous emission rate of quantum emitters (rhodamine isothiocyanate) grafted in the NP silica shell. This strong enhancement (70 – 100 times) further occurs on the whole, broadband emission spectrum (565 nm to 640 nm) of the emitters.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of Surface Plasmon Polaritons,” Phys. Rep., Rev. Sect. Phys. Lett.408, 131–314 (2005).
  2. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  3. K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003).
    [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature424, 824–860 (2003).
    [CrossRef] [PubMed]
  5. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
    [CrossRef] [PubMed]
  6. A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
    [CrossRef]
  7. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008).
    [CrossRef]
  8. S. Wedge and W. L. Barnes, “Surface Plasmon-Polariton Mediated Light Emission through Thin Metal Films,” Opt. Express12, 3673–3685 (2004).
    [CrossRef] [PubMed]
  9. J. Vuckovic, M. Loncar, and A Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron.36, 1131–1144 (2000).
    [CrossRef]
  10. J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater.18, 1267–1270 (2006).
    [CrossRef]
  11. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008).
    [CrossRef] [PubMed]
  12. H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008).
    [CrossRef] [PubMed]
  13. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
    [CrossRef] [PubMed]
  14. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
    [CrossRef] [PubMed]
  15. W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett.52, 1041–1044 (1984).
    [CrossRef]
  16. H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett.80, 5663–5666 (1998).
    [CrossRef]
  17. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett.30, 3404–3406 (2005).
    [CrossRef]
  18. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin substrate film,” Phys. Rev. B75, 235426 (2007).
    [CrossRef]
  19. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34, 244–246 (2009).
    [CrossRef] [PubMed]
  20. K. H. Drexhage, Progress in Optics, E. Wolf, ed. (North-Holland Amsterdam, 1974).
  21. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
    [CrossRef]
  22. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007).
    [CrossRef] [PubMed]
  23. J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009).
    [CrossRef] [PubMed]
  24. L. K. Ausman and G. C. Schatz, “On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres,” J. Chem. Phys.131, 084708 (2009).
    [CrossRef] [PubMed]
  25. C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010).
    [CrossRef]
  26. M. Ferrié, N. Pinna, S. Ravaine, and R. A. L. Vallée, “Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas,” Opt. Express19, 17697–17712 (2011).
    [CrossRef] [PubMed]
  27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
    [CrossRef]
  28. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).
  29. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
    [CrossRef] [PubMed]
  30. P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Lett.4, 2209–2213 (2004).
    [CrossRef]
  31. J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
    [CrossRef]
  32. R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
    [CrossRef]
  33. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000).
    [CrossRef]
  34. C. Graf and A. van Blaaderen, “Metallodielectric Colloidal CoreShell Particles for Photonic Applications,” Langmuir18, 524–534 (2002).
    [CrossRef]
  35. X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009).
    [CrossRef]
  36. S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
    [CrossRef]
  37. P. Massé and S. Ravaine, “Engineered Multilayer Colloidal Crystals with Tunable Optical Properties,” Chem. Mater.17, 4244–4249 (2005).
    [CrossRef]
  38. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House Inc., Norwood, MA, 2005).
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
    [CrossRef]
  40. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
    [CrossRef]
  41. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]

2011 (2)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

M. Ferrié, N. Pinna, S. Ravaine, and R. A. L. Vallée, “Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas,” Opt. Express19, 17697–17712 (2011).
[CrossRef] [PubMed]

2010 (2)

C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

2009 (4)

X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009).
[CrossRef]

J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009).
[CrossRef] [PubMed]

L. K. Ausman and G. C. Schatz, “On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres,” J. Chem. Phys.131, 084708 (2009).
[CrossRef] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34, 244–246 (2009).
[CrossRef] [PubMed]

2008 (3)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008).
[CrossRef]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008).
[CrossRef] [PubMed]

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008).
[CrossRef] [PubMed]

2007 (3)

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin substrate film,” Phys. Rev. B75, 235426 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
[CrossRef]

2006 (5)

R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
[CrossRef]

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

2005 (6)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of Surface Plasmon Polaritons,” Phys. Rep., Rev. Sect. Phys. Lett.408, 131–314 (2005).

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett.30, 3404–3406 (2005).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

P. Massé and S. Ravaine, “Engineered Multilayer Colloidal Crystals with Tunable Optical Properties,” Chem. Mater.17, 4244–4249 (2005).
[CrossRef]

2004 (3)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Lett.4, 2209–2213 (2004).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface Plasmon-Polariton Mediated Light Emission through Thin Metal Films,” Opt. Express12, 3673–3685 (2004).
[CrossRef] [PubMed]

2003 (2)

K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature424, 824–860 (2003).
[CrossRef] [PubMed]

2002 (1)

C. Graf and A. van Blaaderen, “Metallodielectric Colloidal CoreShell Particles for Photonic Applications,” Langmuir18, 524–534 (2002).
[CrossRef]

2001 (1)

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

2000 (2)

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000).
[CrossRef]

J. Vuckovic, M. Loncar, and A Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron.36, 1131–1144 (2000).
[CrossRef]

1998 (1)

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett.80, 5663–5666 (1998).
[CrossRef]

1995 (1)

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

1984 (1)

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett.52, 1041–1044 (1984).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Allison, K. J.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
[CrossRef]

Ausman, L. K.

L. K. Ausman and G. C. Schatz, “On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres,” J. Chem. Phys.131, 084708 (2009).
[CrossRef] [PubMed]

Badenes, G.

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
[CrossRef]

Barnes, W. L.

Baudrion, A.-L.

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Biswas, R.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Biteen, J. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
[CrossRef]

Bozhevolnyi, S. I.

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

Brayer, D.

C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010).
[CrossRef]

Bright, R. M.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008).
[CrossRef] [PubMed]

Brown, K. R.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Cao, H.

X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009).
[CrossRef]

Carminati, R.

C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010).
[CrossRef]

R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Cesario, J.

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Chen, C.-S.

J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009).
[CrossRef] [PubMed]

Chen, J.-H.

J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009).
[CrossRef] [PubMed]

Choe, C. R.

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Chu, Y.

Coronado, E.

K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Crozier, K. B.

Daly, J.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Davis, J. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Deng, L.

X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009).
[CrossRef]

Dereux, A.

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature424, 824–860 (2003).
[CrossRef] [PubMed]

Ding, C. G. J.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Dintinger, J.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, Progress in Optics, E. Wolf, ed. (North-Holland Amsterdam, 1974).

Ebbesen, T. W.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature424, 824–860 (2003).
[CrossRef] [PubMed]

Enoch, S.

Fan, W. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Ferrié, M.

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008).
[CrossRef]

Freeman, R. G.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Froufe Pérez, L. S.

C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010).
[CrossRef]

Gao, H. W.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008).
[CrossRef] [PubMed]

Gao, X.

X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009).
[CrossRef]

Garcia de Abajo, F. J.

J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
[CrossRef]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008).
[CrossRef] [PubMed]

Grabar, K. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Graf, C.

C. Graf and A. van Blaaderen, “Metallodielectric Colloidal CoreShell Particles for Photonic Applications,” Langmuir18, 524–534 (2002).
[CrossRef]

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Greenwald, A.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
[CrossRef]

Guthric, A. P.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House Inc., Norwood, MA, 2005).

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett.80, 5663–5666 (1998).
[CrossRef]

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett.52, 1041–1044 (1984).
[CrossRef]

He, J.

X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009).
[CrossRef]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Henzie, J.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008).
[CrossRef] [PubMed]

Holland, W. R.

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett.52, 1041–1044 (1984).
[CrossRef]

Hommer, M. B.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Hong, S. I.

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Jackson, M. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Johnson, E.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Johnson, P.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Kang, S.

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Kim, J.

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

Kuo, M.-K.

J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009).
[CrossRef] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Lalanne, P.

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

Lamy de la Chapelle, M.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
[CrossRef]

Lecamp, G.

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

Lee, M. H.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008).
[CrossRef] [PubMed]

Lee, T.-W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Lewis, N. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Liaw, J.-W.

J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009).
[CrossRef] [PubMed]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Liz-Marzan, L. M. J.

J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, and A Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron.36, 1131–1144 (2000).
[CrossRef]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
[CrossRef]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Malloy, K. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of Surface Plasmon Polaritons,” Phys. Rep., Rev. Sect. Phys. Lett.408, 131–314 (2005).

Massé, P.

P. Massé and S. Ravaine, “Engineered Multilayer Colloidal Crystals with Tunable Optical Properties,” Chem. Mater.17, 4244–4249 (2005).
[CrossRef]

McNeal, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Mertens, H.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Natan, M. J.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000).
[CrossRef]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Lett.4, 2209–2213 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Odom, T. W.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008).
[CrossRef] [PubMed]

Osgood, R. M.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008).
[CrossRef]

Panoiu, N. C.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Papanikolaou, N.

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin substrate film,” Phys. Rev. B75, 235426 (2007).
[CrossRef]

Park, M.

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

Pastoriza-Santos, I.

J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
[CrossRef]

Perez-Juste, J.

J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
[CrossRef]

Pinna, N.

Polman, A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
[CrossRef]

Pralle, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Lett.4, 2209–2213 (2004).
[CrossRef]

Puscasu, I.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Quidant, R.

Raether, H.

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

Ravaine, S.

Rim, S.

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

Rodriguez-Fernandez, J.

J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
[CrossRef]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Sánchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Schatz, G. C.

L. K. Ausman and G. C. Schatz, “On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres,” J. Chem. Phys.131, 084708 (2009).
[CrossRef] [PubMed]

Schatz, G. G.

K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Scherer, A

J. Vuckovic, M. Loncar, and A Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron.36, 1131–1144 (2000).
[CrossRef]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008).
[CrossRef] [PubMed]

Smith, P. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of Surface Plasmon Polaritons,” Phys. Rep., Rev. Sect. Phys. Lett.408, 131–314 (2005).

Soares, J. A. N. T.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett.80, 5663–5666 (1998).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House Inc., Norwood, MA, 2005).

Vallée, R. A. L.

van Blaaderen, A.

C. Graf and A. van Blaaderen, “Metallodielectric Colloidal CoreShell Particles for Photonic Applications,” Langmuir18, 524–534 (2002).
[CrossRef]

Vandenbem, C.

C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
[CrossRef]

Vigoureux, J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, and A Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron.36, 1131–1144 (2000).
[CrossRef]

Walter, D. G.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000).
[CrossRef]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Wedge, S.

Weeber, J.-C.

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of Surface Plasmon Polaritons,” Phys. Rep., Rev. Sect. Phys. Lett.408, 131–314 (2005).

Zhang, S.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Zhao, L.L.

K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Acc. Chem. Res. (1)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res.41, 1049–1057 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater.18, 1267–1270 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006).
[CrossRef]

Appl. Phys. (1)

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. J. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Appl. Phys.98, 013531 (2005).

Chem. Mater. (2)

P. Massé and S. Ravaine, “Engineered Multilayer Colloidal Crystals with Tunable Optical Properties,” Chem. Mater.17, 4244–4249 (2005).
[CrossRef]

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater.12, 306–313 (2000).
[CrossRef]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, and A Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron.36, 1131–1144 (2000).
[CrossRef]

J. Chem. Phys. (1)

L. K. Ausman and G. C. Schatz, “On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres,” J. Chem. Phys.131, 084708 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L.L. Zhao, and G. G. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

J. Phys. Chem. C (1)

J. Rodriguez-Fernandez, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, and L. M. J. Liz-Marzan, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111, 13361–13366 (2007).
[CrossRef]

Langmuir (1)

C. Graf and A. van Blaaderen, “Metallodielectric Colloidal CoreShell Particles for Photonic Applications,” Langmuir18, 524–534 (2002).
[CrossRef]

Nano Lett. (4)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Lett.4, 2209–2213 (2004).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8, 4391–4397 (2008).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature424, 824–860 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecules fluorescence,” Opt. Express17, 13532–13540 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

X. Gao, J. He, L. Deng, and H. Cao, “Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles,” Opt. Mater.31, 1715–1719 (2009).
[CrossRef]

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B7, 085416 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett.52, 1041–1044 (1984).
[CrossRef]

Phys. Rep., Rev. Sect. Phys. Lett. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nanooptics of Surface Plasmon Polaritons,” Phys. Rep., Rev. Sect. Phys. Lett.408, 131–314 (2005).

Phys. Rev. B (4)

A.-L. Baudrion, J.-C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the Filling Factor on the Spectral Properties of Plasmonic Crystals,” Phys. Rev. B74, 125406 (2006).
[CrossRef]

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

C. Vandenbem, D. Brayer, L. S. Froufe Pérez, and R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B81, 085444 (2010).
[CrossRef]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin substrate film,” Phys. Rev. B75, 235426 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett.80, 5663–5666 (1998).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Polymer (1)

S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer42, 879–887 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening Plasmonic Materials Using Pyramidal Gratings,” Proc. Natl. Acad. Sci. U.S.A.105, 20146–20151 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative Multispectral Biosensing and 1D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Natl. Acad. Sci. U.S.A.103, 17143–17148 (2006).
[CrossRef] [PubMed]

Science (1)

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthric, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science267, 1629–1632 (1995).
[CrossRef] [PubMed]

Other (3)

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

K. H. Drexhage, Progress in Optics, E. Wolf, ed. (North-Holland Amsterdam, 1974).

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House Inc., Norwood, MA, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated (a) and experimental (b) reflection spectra of a hcp array of CS NPs either sandwiched bewteen a glass substrate and air (gl), a thick gold film and air (g), a glass substrate and a 30 nm gold curved film (glg) or a thick gold film and a 30 nm gold curved film (gg). The considered structures are schematically illustrated in c).

Fig. 2
Fig. 2

Evolution of the reflection spectra of the gg nanostructure as a function of either the shell radius (a) or the core diameter D, increasing from left to right from D = 40 nm to 140 nm by step of 20 nm (b). c) and d) Corresponding resonance wavelengths of the two dips (plasmon resonance modes) observed as a function of the lattice constant of the hcp array. HER (LER) pertains to the High- (Low-) Energy Resonance modes. In d), the (1,0) SPP resonances of the metallic film grating coupled with the metallic spheres is also shown.

Fig. 3
Fig. 3

Near field intensity patterns in the xy-plane (a) or xz-plane (b, c) for a plane wave either at the resonance wavelength λ = 515 nm of the high-energy dip (a, b) or at the resonance wavelength λ = 636 nm of the low-energy dip (c) propagating along z and polarized along x in the gg structure. Notice the quadripolar feature exhibited by the |Ey|2 field intensity component in a. d) Near field intensity patterns (insets) in the xz-plane for the two modes exhibited in the reflection spectrum of a hypothetical gg structure where the surrounding gold layers are both flat.

Fig. 4
Fig. 4

TEM picture of the active CS NPs (a) and AFM picture of their arrangement in a hcp array in the gg nanostructure.

Fig. 5
Fig. 5

Time and spectrally resolved (experimental) spontaneous emission intensities of rhodamine isothiocyanate (RITC) molecules in the gl (a) and gg (b) nanostructures. Normalized spontaneous emission rates of RITC emitters embedded in the gl, g, glg and gg nanostructures experimentally obtained (c) and comparison between simulated (dash-dot: radiative part, dot: non radiative part and solid blue line: total rate) and experimental (solid balck line) rates for RITC emitters in the gg nanostructure (d).

Fig. 6
Fig. 6

Decay profiles as a function of wavelength for RITC emitters embedded in the gl (a), g (b), glg (c) and gg (d) nanostructures. The solid lines are stretched exponentials fits of the various decay profiles convoluted with the instrumental response function of the setup.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k || = ω c ε M ε D ε M + ε D ,
λ ( m , n ) = a m 2 + n 2 ε M ε D ε M + ε D ,

Metrics