Abstract

The diffusion of boron in yB2O3(1-y)SiO2 glasses with up to 8 mol% B2O3 was investigated by annealing doped layers on the inner surface of quartz glass tubes between 1700°C and 2000°C and measuring radial doping profiles by X-ray microprobe analysis and refractive index profiling subsequent to the tube collapse. By comparison with calculated profiles, diffusion coefficients could be determined and fitted by an Arrhenius function, where the preexponential D0 = 100.38 cm2s−1 is constant, but the activation energy decreases with increasing concentration according to E = (449-4.8∙c1.06) kJ∙mol−1 (c[mol% B2O3] = 100y).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
    [CrossRef]
  2. J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun.204(1-6), 111–118 (2002).
    [CrossRef]
  3. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
    [CrossRef]
  4. X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
    [CrossRef]
  5. A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” J. Lightwave Technol.18(2), 193–198 (2000).
    [CrossRef]
  6. P. E. Sanders, “Specialty optical fiber products for sensor applications,” Proc. SPIE2292, 316–327 (1994).
    [CrossRef]
  7. J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids181(3), 266–273 (1995).
    [CrossRef]
  8. J. Kirchhof, S. Unger, and J. Dellith, “Diffusion of phosphorus doped silica for active optical fibers,” J. Non-Cryst. Solids345-346, 234–238 (2004).
    [CrossRef]
  9. J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2-SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B48(3), 129–133 (2007).
  10. S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 41–46 (2011).
  11. J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).
  12. J. B. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc.73(12), 3537–3556 (1990).
    [CrossRef]
  13. H.-R. Müller and U. Röpke, “Preform index profiling with high spatial resolution,” Phys. Status Solidi A66(2), K161–K164 (1981).
    [CrossRef]
  14. J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The Mean Viscosity of Quartz Glass Reactor Tubes,” Cryst. Res. Technol.21(6), 763–770 (1986).
    [CrossRef]
  15. S. J. B. Reed, Electron Probe Microanalysis, 2nd ed. (Cambridge University Press, 1993).
  16. C. Teichmann, J. Dellith, and S. Unger, “Problems encountered in wavelength dispersive electron probe microanalysis of boron doped silica using multilayer diffractive elements,” presented at the EMAS2010 9th Regional Workshop on Electron Probe Microanalysis of Materials Today – Practical Aspects, Amsterdam, 2010.
  17. G. Bastin and H. Heijligers, Quantitative Electron Probe Microanalysis of Boron in Binary Borides (CIP-DATA Koninklijke Bibliotheek, Den Haag, 1986).
  18. DURAN R Glass, ISO 3585, registered standard No. 7769, Reference standards for X-ray microanalysis (Micro-Analysis Consutants Ltd. MAC, Unit 19, Edison Road, Cambridgeshire PE27 3LF, U.K.).
  19. J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion processes in lightguide materials. The diffusion of OH in silica glass at high temperatures,” Phys. Status Solidi A101(2), 391–401 (1987).
    [CrossRef]
  20. S. Horiuchi and J. Yamaguchi, “Diffusion of boron in silicon through oxide layers,” Jpn. J. Appl. Phys.1(6), 314–323 (1962).
    [CrossRef]
  21. D. M. Brown and P. R. Kennicott, “Glass source B diffusion in Si and SiO2,” J. Electrochem. Soc.118(2), 293–300 (1971).
    [CrossRef]
  22. R. O. Schwenker, “Etch rate characterization of borosilicate glasses as diffusion sources,” J. Electrochem. Soc.118(2), 313–317 (1971).
    [CrossRef]
  23. M. Ghezzo and D. M. Brown, “Diffusivity summary of B, Ga, P, As, and Sb in SiO2,” J. Electrochem. Soc.120(1), 146–148 (1973).
    [CrossRef]
  24. S. P. Mukherjee and P. E. Evans, “Studies of diffusion of boron through silicon oxide films,” Thin Solid Films14(2), 299–303 (1972).
    [CrossRef]
  25. P. R. Wilson, “The diffusion of boron in the Si-SiO2 system,” Solid-State Electron.15(9), 961–970 (1972).
    [CrossRef]
  26. K. Shimakura, T. Suzuki, and Y. Yadoiwa, “Boron and phosphorus diffusion through a SiO2 layer from a doped polycrystalline Si source under various drive-in ambients,” Solid-State Electron.18(11), 991–997, IN4 (1975).
    [CrossRef]
  27. C. Y. Wong and F. S. Lai, “Ambient and dopant effects on boron diffusion in oxides,” Appl. Phys. Lett.48(24), 1658–1660 (1986).
    [CrossRef]
  28. T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
    [CrossRef]
  29. E. F. Riebling, “Structure of borosilicate and borogermanate melts at 1300°C; a viscosity and density study,” J. Am. Ceram. Soc.47(10), 478–483 (1964).
    [CrossRef]
  30. R. Brückner and J. F. Navarro, “Physikalisch-chemische Untersuchungen im System B2O3-SiO2,” Glastech. Ber.39, 283–293 (1966).
  31. G. Urbain, F. Millon, and S. Cariset, “Chimie physique atomique et moléculaire - Mesures de viscosités de liquides binaires SiO2-B2O3 riches en silice,” C. R. Acad. Sci. Ser. C290, 137–140 (1980).
  32. J. Zarzycki, Glasses and the Vitreous State (Cambridge University Press, 1991), Cambridge Solid State Science Series, Vol. 9.
  33. I. Avramov, “Relationship between diffusion, self-diffusion and viscosity,” J. Non-Cryst. Solids355(10-12), 745–747 (2009).
    [CrossRef]
  34. J. E. Shelby, Handbook of Gas Diffusion in Solids and Melts (ASM International, 1996).

2011 (1)

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 41–46 (2011).

2009 (1)

I. Avramov, “Relationship between diffusion, self-diffusion and viscosity,” J. Non-Cryst. Solids355(10-12), 745–747 (2009).
[CrossRef]

2007 (1)

J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2-SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B48(3), 129–133 (2007).

2006 (1)

J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).

2004 (1)

J. Kirchhof, S. Unger, and J. Dellith, “Diffusion of phosphorus doped silica for active optical fibers,” J. Non-Cryst. Solids345-346, 234–238 (2004).
[CrossRef]

2002 (1)

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun.204(1-6), 111–118 (2002).
[CrossRef]

2001 (1)

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

2000 (1)

1995 (2)

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids181(3), 266–273 (1995).
[CrossRef]

1994 (1)

P. E. Sanders, “Specialty optical fiber products for sensor applications,” Proc. SPIE2292, 316–327 (1994).
[CrossRef]

1993 (1)

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
[CrossRef]

1990 (1)

J. B. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc.73(12), 3537–3556 (1990).
[CrossRef]

1987 (1)

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion processes in lightguide materials. The diffusion of OH in silica glass at high temperatures,” Phys. Status Solidi A101(2), 391–401 (1987).
[CrossRef]

1986 (2)

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The Mean Viscosity of Quartz Glass Reactor Tubes,” Cryst. Res. Technol.21(6), 763–770 (1986).
[CrossRef]

C. Y. Wong and F. S. Lai, “Ambient and dopant effects on boron diffusion in oxides,” Appl. Phys. Lett.48(24), 1658–1660 (1986).
[CrossRef]

1981 (1)

H.-R. Müller and U. Röpke, “Preform index profiling with high spatial resolution,” Phys. Status Solidi A66(2), K161–K164 (1981).
[CrossRef]

1980 (1)

G. Urbain, F. Millon, and S. Cariset, “Chimie physique atomique et moléculaire - Mesures de viscosités de liquides binaires SiO2-B2O3 riches en silice,” C. R. Acad. Sci. Ser. C290, 137–140 (1980).

1975 (1)

K. Shimakura, T. Suzuki, and Y. Yadoiwa, “Boron and phosphorus diffusion through a SiO2 layer from a doped polycrystalline Si source under various drive-in ambients,” Solid-State Electron.18(11), 991–997, IN4 (1975).
[CrossRef]

1973 (2)

M. Ghezzo and D. M. Brown, “Diffusivity summary of B, Ga, P, As, and Sb in SiO2,” J. Electrochem. Soc.120(1), 146–148 (1973).
[CrossRef]

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
[CrossRef]

1972 (2)

S. P. Mukherjee and P. E. Evans, “Studies of diffusion of boron through silicon oxide films,” Thin Solid Films14(2), 299–303 (1972).
[CrossRef]

P. R. Wilson, “The diffusion of boron in the Si-SiO2 system,” Solid-State Electron.15(9), 961–970 (1972).
[CrossRef]

1971 (2)

D. M. Brown and P. R. Kennicott, “Glass source B diffusion in Si and SiO2,” J. Electrochem. Soc.118(2), 293–300 (1971).
[CrossRef]

R. O. Schwenker, “Etch rate characterization of borosilicate glasses as diffusion sources,” J. Electrochem. Soc.118(2), 313–317 (1971).
[CrossRef]

1966 (1)

R. Brückner and J. F. Navarro, “Physikalisch-chemische Untersuchungen im System B2O3-SiO2,” Glastech. Ber.39, 283–293 (1966).

1964 (1)

E. F. Riebling, “Structure of borosilicate and borogermanate melts at 1300°C; a viscosity and density study,” J. Am. Ceram. Soc.47(10), 478–483 (1964).
[CrossRef]

1962 (1)

S. Horiuchi and J. Yamaguchi, “Diffusion of boron in silicon through oxide layers,” Jpn. J. Appl. Phys.1(6), 314–323 (1962).
[CrossRef]

Aichele, C.

J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).

Ainslie, B. J.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
[CrossRef]

Allsop, T.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Aoyama, T.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

Armitage, J. R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
[CrossRef]

Avramov, I.

I. Avramov, “Relationship between diffusion, self-diffusion and viscosity,” J. Non-Cryst. Solids355(10-12), 745–747 (2009).
[CrossRef]

Below, E.

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion processes in lightguide materials. The diffusion of OH in silica glass at high temperatures,” Phys. Status Solidi A101(2), 391–401 (1987).
[CrossRef]

Bennion, I.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Brown, D. M.

M. Ghezzo and D. M. Brown, “Diffusivity summary of B, Ga, P, As, and Sb in SiO2,” J. Electrochem. Soc.120(1), 146–148 (1973).
[CrossRef]

D. M. Brown and P. R. Kennicott, “Glass source B diffusion in Si and SiO2,” J. Electrochem. Soc.118(2), 293–300 (1971).
[CrossRef]

Brückner, R.

R. Brückner and J. F. Navarro, “Physikalisch-chemische Untersuchungen im System B2O3-SiO2,” Glastech. Ber.39, 283–293 (1966).

Campbell, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
[CrossRef]

Cariset, S.

G. Urbain, F. Millon, and S. Cariset, “Chimie physique atomique et moléculaire - Mesures de viscosités de liquides binaires SiO2-B2O3 riches en silice,” C. R. Acad. Sci. Ser. C290, 137–140 (1980).

Dellith, J.

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 41–46 (2011).

J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2-SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B48(3), 129–133 (2007).

J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).

J. Kirchhof, S. Unger, and J. Dellith, “Diffusion of phosphorus doped silica for active optical fibers,” J. Non-Cryst. Solids345-346, 234–238 (2004).
[CrossRef]

DiGiovanni, D. J.

J. B. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc.73(12), 3537–3556 (1990).
[CrossRef]

Evans, P. E.

S. P. Mukherjee and P. E. Evans, “Studies of diffusion of boron through silicon oxide films,” Thin Solid Films14(2), 299–303 (1972).
[CrossRef]

Funke, A.

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The Mean Viscosity of Quartz Glass Reactor Tubes,” Cryst. Res. Technol.21(6), 763–770 (1986).
[CrossRef]

Ghezzo, M.

M. Ghezzo and D. M. Brown, “Diffusivity summary of B, Ga, P, As, and Sb in SiO2,” J. Electrochem. Soc.120(1), 146–148 (1973).
[CrossRef]

Grimm, St.

J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).

Gwandu, B.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Horiuchi, S.

S. Horiuchi and J. Yamaguchi, “Diffusion of boron in silicon through oxide layers,” Jpn. J. Appl. Phys.1(6), 314–323 (1962).
[CrossRef]

Ito, T.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

Jaeger, R. E.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
[CrossRef]

Kashyap, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
[CrossRef]

Kennicott, P. R.

D. M. Brown and P. R. Kennicott, “Glass source B diffusion in Si and SiO2,” J. Electrochem. Soc.118(2), 293–300 (1971).
[CrossRef]

Kilian, A.

Kirchhof, J.

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 41–46 (2011).

J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2-SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B48(3), 129–133 (2007).

J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).

J. Kirchhof, S. Unger, and J. Dellith, “Diffusion of phosphorus doped silica for active optical fibers,” J. Non-Cryst. Solids345-346, 234–238 (2004).
[CrossRef]

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” J. Lightwave Technol.18(2), 193–198 (2000).
[CrossRef]

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids181(3), 266–273 (1995).
[CrossRef]

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion processes in lightguide materials. The diffusion of OH in silica glass at high temperatures,” Phys. Status Solidi A101(2), 391–401 (1987).
[CrossRef]

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The Mean Viscosity of Quartz Glass Reactor Tubes,” Cryst. Res. Technol.21(6), 763–770 (1986).
[CrossRef]

Klein, K.-F.

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids181(3), 266–273 (1995).
[CrossRef]

Kleinert, P.

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion processes in lightguide materials. The diffusion of OH in silica glass at high temperatures,” Phys. Status Solidi A101(2), 391–401 (1987).
[CrossRef]

Knappe, B.

J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2-SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B48(3), 129–133 (2007).

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids181(3), 266–273 (1995).
[CrossRef]

Kuhlow, B.

Lai, F. S.

C. Y. Wong and F. S. Lai, “Ambient and dopant effects on boron diffusion in oxides,” Appl. Phys. Lett.48(24), 1658–1660 (1986).
[CrossRef]

MacChesney, J. B.

J. B. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc.73(12), 3537–3556 (1990).
[CrossRef]

Millon, F.

G. Urbain, F. Millon, and S. Cariset, “Chimie physique atomique et moléculaire - Mesures de viscosités de liquides binaires SiO2-B2O3 riches en silice,” C. R. Acad. Sci. Ser. C290, 137–140 (1980).

Mukherjee, S. P.

S. P. Mukherjee and P. E. Evans, “Studies of diffusion of boron through silicon oxide films,” Thin Solid Films14(2), 299–303 (1972).
[CrossRef]

Müller, H.-R.

H.-R. Müller and U. Röpke, “Preform index profiling with high spatial resolution,” Phys. Status Solidi A66(2), K161–K164 (1981).
[CrossRef]

Navarro, J. F.

R. Brückner and J. F. Navarro, “Physikalisch-chemische Untersuchungen im System B2O3-SiO2,” Glastech. Ber.39, 283–293 (1966).

Oh, K.

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun.204(1-6), 111–118 (2002).
[CrossRef]

Pinnow, D. A.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
[CrossRef]

Przyrembel, G.

Radloff, W.

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion processes in lightguide materials. The diffusion of OH in silica glass at high temperatures,” Phys. Status Solidi A101(2), 391–401 (1987).
[CrossRef]

Rich, T. C.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
[CrossRef]

Riebling, E. F.

E. F. Riebling, “Structure of borosilicate and borogermanate melts at 1300°C; a viscosity and density study,” J. Am. Ceram. Soc.47(10), 478–483 (1964).
[CrossRef]

Röpke, U.

H.-R. Müller and U. Röpke, “Preform index profiling with high spatial resolution,” Phys. Status Solidi A66(2), K161–K164 (1981).
[CrossRef]

Sanders, P. E.

P. E. Sanders, “Specialty optical fiber products for sensor applications,” Proc. SPIE2292, 316–327 (1994).
[CrossRef]

Scheffel, A.

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 41–46 (2011).

Schwenker, R. O.

R. O. Schwenker, “Etch rate characterization of borosilicate glasses as diffusion sources,” J. Electrochem. Soc.118(2), 313–317 (1971).
[CrossRef]

Shimakura, K.

K. Shimakura, T. Suzuki, and Y. Yadoiwa, “Boron and phosphorus diffusion through a SiO2 layer from a doped polycrystalline Si source under various drive-in ambients,” Solid-State Electron.18(11), 991–997, IN4 (1975).
[CrossRef]

Shu, X.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Suzuki, K.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

Suzuki, T.

K. Shimakura, T. Suzuki, and Y. Yadoiwa, “Boron and phosphorus diffusion through a SiO2 layer from a doped polycrystalline Si source under various drive-in ambients,” Solid-State Electron.18(11), 991–997, IN4 (1975).
[CrossRef]

Takasaki, K.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

Tashiro, H.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

Toda, Y.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

Unger, S.

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 41–46 (2011).

J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2-SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B48(3), 129–133 (2007).

J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).

J. Kirchhof, S. Unger, and J. Dellith, “Diffusion of phosphorus doped silica for active optical fibers,” J. Non-Cryst. Solids345-346, 234–238 (2004).
[CrossRef]

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids181(3), 266–273 (1995).
[CrossRef]

Urbain, G.

G. Urbain, F. Millon, and S. Cariset, “Chimie physique atomique et moléculaire - Mesures de viscosités de liquides binaires SiO2-B2O3 riches en silice,” C. R. Acad. Sci. Ser. C290, 137–140 (1980).

Van Uitert, L. G.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
[CrossRef]

Wemple, S. H.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
[CrossRef]

Williams, D. L.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
[CrossRef]

Wilson, P. R.

P. R. Wilson, “The diffusion of boron in the Si-SiO2 system,” Solid-State Electron.15(9), 961–970 (1972).
[CrossRef]

Wischmann, W.

Wong, C. Y.

C. Y. Wong and F. S. Lai, “Ambient and dopant effects on boron diffusion in oxides,” Appl. Phys. Lett.48(24), 1658–1660 (1986).
[CrossRef]

Yadoiwa, Y.

K. Shimakura, T. Suzuki, and Y. Yadoiwa, “Boron and phosphorus diffusion through a SiO2 layer from a doped polycrystalline Si source under various drive-in ambients,” Solid-State Electron.18(11), 991–997, IN4 (1975).
[CrossRef]

Yamaguchi, J.

S. Horiuchi and J. Yamaguchi, “Diffusion of boron in silicon through oxide layers,” Jpn. J. Appl. Phys.1(6), 314–323 (1962).
[CrossRef]

Yamazaki, T.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

Yu, J. W.

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun.204(1-6), 111–118 (2002).
[CrossRef]

Zhang, L.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

C. Y. Wong and F. S. Lai, “Ambient and dopant effects on boron diffusion in oxides,” Appl. Phys. Lett.48(24), 1658–1660 (1986).
[CrossRef]

C. R. Acad. Sci. Ser. C (1)

G. Urbain, F. Millon, and S. Cariset, “Chimie physique atomique et moléculaire - Mesures de viscosités de liquides binaires SiO2-B2O3 riches en silice,” C. R. Acad. Sci. Ser. C290, 137–140 (1980).

Cryst. Res. Technol. (1)

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The Mean Viscosity of Quartz Glass Reactor Tubes,” Cryst. Res. Technol.21(6), 763–770 (1986).
[CrossRef]

Electron. Lett. (1)

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett.29(1), 45–47 (1993).
[CrossRef]

Glastech. Ber. (1)

R. Brückner and J. F. Navarro, “Physikalisch-chemische Untersuchungen im System B2O3-SiO2,” Glastech. Ber.39, 283–293 (1966).

IEEE Photon. Technol. Lett. (1)

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

J. Am. Ceram. Soc. (2)

E. F. Riebling, “Structure of borosilicate and borogermanate melts at 1300°C; a viscosity and density study,” J. Am. Ceram. Soc.47(10), 478–483 (1964).
[CrossRef]

J. B. MacChesney and D. J. DiGiovanni, “Materials development of optical fiber,” J. Am. Ceram. Soc.73(12), 3537–3556 (1990).
[CrossRef]

J. Appl. Phys. (2)

T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys.77(1), 417–419 (1995).
[CrossRef]

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys.44(12), 5432–5437 (1973).
[CrossRef]

J. Electrochem. Soc. (3)

D. M. Brown and P. R. Kennicott, “Glass source B diffusion in Si and SiO2,” J. Electrochem. Soc.118(2), 293–300 (1971).
[CrossRef]

R. O. Schwenker, “Etch rate characterization of borosilicate glasses as diffusion sources,” J. Electrochem. Soc.118(2), 313–317 (1971).
[CrossRef]

M. Ghezzo and D. M. Brown, “Diffusivity summary of B, Ga, P, As, and Sb in SiO2,” J. Electrochem. Soc.120(1), 146–148 (1973).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (3)

I. Avramov, “Relationship between diffusion, self-diffusion and viscosity,” J. Non-Cryst. Solids355(10-12), 745–747 (2009).
[CrossRef]

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids181(3), 266–273 (1995).
[CrossRef]

J. Kirchhof, S. Unger, and J. Dellith, “Diffusion of phosphorus doped silica for active optical fibers,” J. Non-Cryst. Solids345-346, 234–238 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Horiuchi and J. Yamaguchi, “Diffusion of boron in silicon through oxide layers,” Jpn. J. Appl. Phys.1(6), 314–323 (1962).
[CrossRef]

Opt. Commun. (1)

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun.204(1-6), 111–118 (2002).
[CrossRef]

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A (1)

J. Kirchhof, S. Unger, C. Aichele, St. Grimm, and J. Dellith, “Gas phase deposition and sintering of borosilicate glasses for optical fibres and planar waveguides,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. A47(6), 172–176 (2006).

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B (2)

J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2-SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B48(3), 129–133 (2007).

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 41–46 (2011).

Phys. Status Solidi A (2)

H.-R. Müller and U. Röpke, “Preform index profiling with high spatial resolution,” Phys. Status Solidi A66(2), K161–K164 (1981).
[CrossRef]

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion processes in lightguide materials. The diffusion of OH in silica glass at high temperatures,” Phys. Status Solidi A101(2), 391–401 (1987).
[CrossRef]

Proc. SPIE (1)

P. E. Sanders, “Specialty optical fiber products for sensor applications,” Proc. SPIE2292, 316–327 (1994).
[CrossRef]

Solid-State Electron. (2)

P. R. Wilson, “The diffusion of boron in the Si-SiO2 system,” Solid-State Electron.15(9), 961–970 (1972).
[CrossRef]

K. Shimakura, T. Suzuki, and Y. Yadoiwa, “Boron and phosphorus diffusion through a SiO2 layer from a doped polycrystalline Si source under various drive-in ambients,” Solid-State Electron.18(11), 991–997, IN4 (1975).
[CrossRef]

Thin Solid Films (1)

S. P. Mukherjee and P. E. Evans, “Studies of diffusion of boron through silicon oxide films,” Thin Solid Films14(2), 299–303 (1972).
[CrossRef]

Other (6)

S. J. B. Reed, Electron Probe Microanalysis, 2nd ed. (Cambridge University Press, 1993).

C. Teichmann, J. Dellith, and S. Unger, “Problems encountered in wavelength dispersive electron probe microanalysis of boron doped silica using multilayer diffractive elements,” presented at the EMAS2010 9th Regional Workshop on Electron Probe Microanalysis of Materials Today – Practical Aspects, Amsterdam, 2010.

G. Bastin and H. Heijligers, Quantitative Electron Probe Microanalysis of Boron in Binary Borides (CIP-DATA Koninklijke Bibliotheek, Den Haag, 1986).

DURAN R Glass, ISO 3585, registered standard No. 7769, Reference standards for X-ray microanalysis (Micro-Analysis Consutants Ltd. MAC, Unit 19, Edison Road, Cambridgeshire PE27 3LF, U.K.).

J. E. Shelby, Handbook of Gas Diffusion in Solids and Melts (ASM International, 1996).

J. Zarzycki, Glasses and the Vitreous State (Cambridge University Press, 1991), Cambridge Solid State Science Series, Vol. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Segment of cross section of the tube with inner layer. (b) Cross section of the collapsed tube.

Fig. 2
Fig. 2

Radial concentration profiles of the B2O3 concentration c, initial (─ • ─ • ─ •), measured (────), calculated (─ ─ ─) ρ*: radius in the collapsed rods. Fitting parameters according to Eqs. (3) and (5): 0: initial τ · F(c) = 0 τ · F(c) = 0; 1: unannealed τ · F(c) = 0.1· exp (0.35· c) µm2 τ · F(c) = 0.2· exp (0.58· c) µm2; 2: annealed τ · F(c) = 4.6· exp (0.35· c) µm2 τ · F(c) = 2.9· exp (0.58· c) µm2.

Fig. 3
Fig. 3

Axial temperature profile, Tmax: temperature in the maximum of the profile, ΔzB: effective axial width calculated according to Eq. (9) with E = 500 kJ·mol−1zB = 1.9 cm).

Fig. 4
Fig. 4

Determined diffusion coefficients in comparison with Eqs. (12)-(15) (broken line) and Eqs. (17)-(20) (solid line); one error bar is given as example.

Fig. 5
Fig. 5

Arrhenius plots of boron diffusion in vitreous silica according to Eqs. (12)-(15) (broken line) and Eqs. (17)-(20) (solid line).

Fig. 6
Fig. 6

Coefficients of boron diffusion in amorphous SiO2 according to [1820], in comparison with the present study for 0 mol% B2O3 (extrapolated) and 10 mol% B2O3 according to Eqs. (12)-(15) (broken line) and Eqs. (17)-(20) (solid line).

Fig. 7
Fig. 7

Diffusion coefficients in binary glasses at 1800°C ●B in B2O3-SiO2 (see this work), Ge in GeO2-SiO2 [9], (c: concentration of B2O3 and GeO2).

Fig. 8
Fig. 8

Correlation between diffusion coefficient D and viscosity η in the glass system B2O3-SiO2.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

c t = 1 ρ ρ ( Dρ c ρ )
dτ=Gdt
c τ = 1 ρ ρ ( F(c)ρ c ρ )
ρ *2 = ρ 2 r i 2
F(c)=exp(kc)
D=ΔτF(c)/ t D
t D =nΔ z B / v B
Δ z B = ( D(z)/ D max ) dz
Δ z B = exp(E/R(1/ T max 1/T(z)))dz
F(c)=exp(k c x )
D(T,c)= D 0 (c)exp(E(c)/RT)
lgD=A(T)+ c x B(T)= A 0 + A 1 /T+ c x ( B 0 + B 1 /T)
x=1.03
A(T)=1.2225231/T
B(T)=0.211+706/T
MAD=( 1/n ) | lg D exp lg D adj |
lgD=A(T)+ c x B(T)= A 0 + A 1 /T+ c x B 1 /T
x=1.06
A(T)=0.3823422/T
B(T)=250/T
D(T,c)= D 0 exp(E(c)/RT)
D 0 = 10 0.38 c m 2 s 1
E=(4494,8 c 1.06 )kJmo l 1
lg(η/Pas)=6.731.1lg(D/c m 2 s 1 )
D=kT/6πrη

Metrics