Abstract

The dielectric function of PbS quantum dots (Qdots) with diameters of 3.5-5.0 nm in glass matrix is determined from transmission measurements by Maxwell-Garnett effective medium theory combined with iterative Kramers-Kronig analysis. The algorithm used provides real and imaginary part of the dielectric function in the 200-1800 nm spectral range, for both Qdot-doped glasses as well as the PbS Qdots alone. The latter data are compared with the results obtained from colloidal PbS quantum dots and, within the limits of the experimental error, agreement is found.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998).
    [CrossRef]
  2. G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
    [CrossRef]
  3. K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
    [CrossRef]
  4. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
    [CrossRef] [PubMed]
  5. S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
    [CrossRef]
  6. P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
    [CrossRef]
  7. L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
    [CrossRef]
  8. M. Kim and M. Yoda, “Infrared quantum dots for liquid-phase thermometry in silicon,” Meas. Sci. Technol.22(8), 085401 (2011).
    [CrossRef]
  9. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
    [CrossRef]
  10. N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
    [CrossRef]
  11. K. E. Fox, T. Furukawa, and W. B. White, “Transition-metal ions in silicate melts. Part 2. Iron in sodium-silicate glasses,” Phys. Chem. Glasses23, 169–178 (1982).
  12. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
    [CrossRef] [PubMed]
  13. A. Sihvola, “Two main avenues leading to the Maxwell Garnett mixing rule,” J. Electromagn. Waves Appl.15(6), 715–725 (2001).
    [CrossRef]

2011

M. Kim and M. Yoda, “Infrared quantum dots for liquid-phase thermometry in silicon,” Meas. Sci. Technol.22(8), 085401 (2011).
[CrossRef]

2010

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

2009

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

2007

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

2005

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
[CrossRef]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

2001

A. Sihvola, “Two main avenues leading to the Maxwell Garnett mixing rule,” J. Electromagn. Waves Appl.15(6), 715–725 (2001).
[CrossRef]

1999

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

1998

A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998).
[CrossRef]

1997

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

1994

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

1982

K. E. Fox, T. Furukawa, and W. B. White, “Transition-metal ions in silicate melts. Part 2. Iron in sodium-silicate glasses,” Phys. Chem. Glasses23, 169–178 (1982).

Allan, G.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Auxier, J.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Bazett-Jones, D. P.

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

Borrelli, N. F.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

Butty, J.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Cauchi, S.

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

De Geyter, B.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

De Muynck, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Delerue, C.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Fox, K. E.

K. E. Fox, T. Furukawa, and W. B. White, “Transition-metal ions in silicate melts. Part 2. Iron in sodium-silicate glasses,” Phys. Chem. Glasses23, 169–178 (1982).

Fritz, K. P.

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

Furukawa, T.

K. E. Fox, T. Furukawa, and W. B. White, “Transition-metal ions in silicate melts. Part 2. Iron in sodium-silicate glasses,” Phys. Chem. Glasses23, 169–178 (1982).

Guerreiro, P. T.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Günes, S.

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

Hens, Z.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Hsu, R. C.

A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998).
[CrossRef]

Huang, C. J.

G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
[CrossRef]

Jabbour, G. E.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Kim, M.

M. Kim and M. Yoda, “Infrared quantum dots for liquid-phase thermometry in silicon,” Meas. Sci. Technol.22(8), 085401 (2011).
[CrossRef]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Konstantatos, G.

G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
[CrossRef]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Kumar, S.

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

Lambert, K.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Levina, L.

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
[CrossRef]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Lipovskii, A.

A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998).
[CrossRef]

Lu, Z. H.

G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
[CrossRef]

Martins, J. C.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Moreels, I.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Musikhin, S.

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

Neugebauer, H.

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

Nisman, R.

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

Nollet, T.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Olkhovets, A.

A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998).
[CrossRef]

Peyghambarian, N.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Sargent, E. H.

G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
[CrossRef]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

Sariciftci, N. S.

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

Scholes, G. D.

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

Schulzgen, A.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Sihvola, A.

A. Sihvola, “Two main avenues leading to the Maxwell Garnett mixing rule,” J. Electromagn. Waves Appl.15(6), 715–725 (2001).
[CrossRef]

Smeets, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Smith, D. W.

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

Sukhovatkin, W.

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

Ten, S.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Vanhaecke, F.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Vantomme, A.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

White, W. B.

K. E. Fox, T. Furukawa, and W. B. White, “Transition-metal ions in silicate melts. Part 2. Iron in sodium-silicate glasses,” Phys. Chem. Glasses23, 169–178 (1982).

Wirtz, L.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

Wise, F. W.

A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998).
[CrossRef]

Wundke, K.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Yoda, M.

M. Kim and M. Yoda, “Infrared quantum dots for liquid-phase thermometry in silicon,” Meas. Sci. Technol.22(8), 085401 (2011).
[CrossRef]

Zhang, S. G.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

ACS Nano

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

L. Levina, W. Sukhovatkin, S. Musikhin, S. Cauchi, R. Nisman, D. P. Bazett-Jones, and E. H. Sargent, “Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma,” Adv. Mater. (Deerfield Beach Fla.)17(15), 1854–1857 (2005).
[CrossRef]

Adv. Funct. Mater.

G. Konstantatos, C. J. Huang, L. Levina, Z. H. Lu, and E. H. Sargent, “Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots,” Adv. Funct. Mater.15(11), 1865–1869 (2005).
[CrossRef]

Appl. Phys. Lett.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped grasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Appl. Phys. Lett.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 mu m in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

J. Electromagn. Waves Appl.

A. Sihvola, “Two main avenues leading to the Maxwell Garnett mixing rule,” J. Electromagn. Waves Appl.15(6), 715–725 (2001).
[CrossRef]

J. Non-Cryst. Solids

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

Meas. Sci. Technol.

M. Kim and M. Yoda, “Infrared quantum dots for liquid-phase thermometry in silicon,” Meas. Sci. Technol.22(8), 085401 (2011).
[CrossRef]

Nat. Mater.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater.4(2), 138–142 (2005).
[CrossRef] [PubMed]

Phys. Chem. Glasses

K. E. Fox, T. Furukawa, and W. B. White, “Transition-metal ions in silicate melts. Part 2. Iron in sodium-silicate glasses,” Phys. Chem. Glasses23, 169–178 (1982).

Phys. Rev. B

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010).
[CrossRef]

Phys. Rev. Lett.

A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett.81(16), 3539–3542 (1998).
[CrossRef]

Sol. Energy Mater. Sol. Cells

S. Günes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, and G. D. Scholes, “Hybrid solar cells using PbS nanoparticles,” Sol. Energy Mater. Sol. Cells91(5), 420–423 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Absorption coefficient of the host glass without PbS Qdots. (b) Absorbance spectra of PbS-doped glasses obtained from samples A-D.

Fig. 2
Fig. 2

(a,b) Spectra of the refractive index n and extinction coefficient k of PbS Qdots as obtained from samples A-D. (c,d) Comparison of the static dielectric constant and the oscillator strength of the ground state transition (first absorption peak) for PbS Qdots confined in glass (squares) and colloidal Qdots (circles [9]). The full line in (c) represents the static dielectric constant of bulk PbS.

Fig. 3
Fig. 3

(a) Spectra of the effective extinction coefficient as obtained from samples A-D. Notice that the number of keff data points is reduced for display purposes. (b) Spectra of the refractive index of the undoped reference sample and the effective refractive index of sample A. (c) Difference between neff of Qdot-doped glasses A-D and reference.

Tables (1)

Tables Icon

Table 1 Physical Properties of Qdot-Doped Glass

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = 16 n g 2 / ( 1 + n g ) 4
n g 2 = 1 + b 1 λ 2 / ( λ 2 c 1 2 ) + b 2 λ 2 / ( λ 2 c 2 2 )
ε e f f = n g 2 + f f L F ( ε Q D n g 2 )

Metrics