Abstract

The search for alternative plasmonic materials with improved optical properties, easier fabrication and integration capabilities over those of the traditional materials such as silver and gold could ultimately lead to real-life applications for plasmonics and metamaterials. In this work, we show that titanium nitride could perform as an alternative plasmonic material in the visible and near-infrared regions. We demonstrate the excitation of surface-plasmon-polaritons on titanium nitride thin films and discuss the performance of various plasmonic and metamaterial structures with titanium nitride as the plasmonic component. We also show that titanium nitride could provide performance that is comparable to that of gold for plasmonic applications and can significantly outperform gold and silver for transformation-optics and some metamaterial applications in the visible and near-infrared regions.

© 2012 OSA

Full Article  |  PDF Article

Errata

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva, "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths [erratum]," Opt. Mater. Express 3, 1658-1659 (2013)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-3-10-1658

References

  • View by:
  • |
  • |
  • |

  1. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
    [CrossRef]
  3. D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
    [CrossRef] [PubMed]
  4. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009).
  5. J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  6. C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science315, 47–49 (2007).
    [CrossRef] [PubMed]
  7. V. Shalaev, “Transforming light,” Science322, 384–386 (2008).
    [CrossRef] [PubMed]
  8. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  9. Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  10. S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).
  11. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007).
    [CrossRef]
  12. A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008).
    [CrossRef]
  13. E. Narimanov and A. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
    [CrossRef]
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
    [CrossRef] [PubMed]
  15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
    [CrossRef] [PubMed]
  16. V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005).
    [CrossRef]
  17. G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32, 53–55 (2007).
    [CrossRef]
  18. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
    [CrossRef] [PubMed]
  19. T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
    [CrossRef] [PubMed]
  20. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
    [CrossRef] [PubMed]
  21. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  22. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
    [CrossRef]
  23. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
    [CrossRef]
  24. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
    [CrossRef]
  25. A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1, 883–889 (2011).
    [CrossRef]
  26. T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25, 38–44 (2000).
    [CrossRef]
  27. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1, 1090–1099 (2011).
    [CrossRef]
  28. D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.
  29. L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
    [CrossRef]
  30. S. Aouadi and M. Debessai, “Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A22, 1975–1979 (2004).
    [CrossRef]
  31. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
    [CrossRef]
  32. B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
    [CrossRef]
  33. W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
    [CrossRef]
  34. V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16, 1186–1195 (2008).
    [CrossRef] [PubMed]
  35. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14, 13030–13042 (2006).
    [CrossRef] [PubMed]
  36. C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun.85, 70–82 (1991).
    [CrossRef]
  37. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992).
    [CrossRef]
  38. K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010).
    [CrossRef] [PubMed]
  39. X. Ni, Z. Liu, and A.V. Kildishev, “PhotonicsDB: Optical Constants,” http://nanohub.org/resources/PhotonicsDB . (doi:10254/nanohub-r3692.10) (2010).
  40. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
    [CrossRef]
  41. S. Maier, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).
  42. M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,”Nanotechnol.21, 115201 (2010).
  43. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).
  44. Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
    [CrossRef]
  45. G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
    [CrossRef]
  46. G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).
  47. A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
    [CrossRef] [PubMed]
  48. V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71, 201101 (2005).
    [CrossRef]
  49. J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
    [CrossRef]
  50. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  51. A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt.45, 2051–2062 (1998).
    [CrossRef]
  52. X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010).
    [CrossRef]

2011 (6)

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1, 883–889 (2011).
[CrossRef]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1, 1090–1099 (2011).
[CrossRef]

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).

2010 (7)

K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,”Nanotechnol.21, 115201 (2010).

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010).
[CrossRef]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

2009 (2)

E. Narimanov and A. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
[CrossRef]

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).

2008 (3)

2007 (7)

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science315, 47–49 (2007).
[CrossRef] [PubMed]

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32, 53–55 (2007).
[CrossRef]

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

2006 (5)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006).
[CrossRef] [PubMed]

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006).
[CrossRef] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14, 13030–13042 (2006).
[CrossRef] [PubMed]

2005 (3)

V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71, 201101 (2005).
[CrossRef]

2004 (2)

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

S. Aouadi and M. Debessai, “Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A22, 1975–1979 (2004).
[CrossRef]

2003 (3)

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

2001 (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

2000 (2)

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25, 38–44 (2000).
[CrossRef]

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

1998 (1)

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt.45, 2051–2062 (1998).
[CrossRef]

1992 (1)

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992).
[CrossRef]

1991 (1)

C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun.85, 70–82 (1991).
[CrossRef]

1988 (1)

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

1985 (1)

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Alekseyev, L.

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006).
[CrossRef] [PubMed]

Aouadi, S.

S. Aouadi and M. Debessai, “Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A22, 1975–1979 (2004).
[CrossRef]

Atwater, H.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Avrutsky, I.

J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

Bahoura, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Barnakov, Y.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Barnes, W.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Barnett, S.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Berini, P.

Boltasseva, A.

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1, 1090–1099 (2011).
[CrossRef]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

Borneman, J.

K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Cai, W.

Cha, T.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Chen, K.

K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Chen, W.-C.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Chettiar, U.

Cho, H.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cortie, M.

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,”Nanotechnol.21, 115201 (2010).

Cummer, S.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Davis, C.

C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun.85, 70–82 (1991).
[CrossRef]

Debessai, M.

S. Aouadi and M. Debessai, “Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A22, 1975–1979 (2004).
[CrossRef]

Dereux, A.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Deutscher, G.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Dolling, G.

Dowd, A.

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,”Nanotechnol.21, 115201 (2010).

Drachev, V.

Ebbesen, T.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Elser, J.

J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Franz, K.

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Frölich, A.

Gadenne, P.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992).
[CrossRef]

Giddings, J.

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,”Nanotechnol.21, 115201 (2010).

Gmachl, C.

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Greene, J.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Gu, L.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Guo, X.-J.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Halas, N.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

Hibbins, A.

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt.45, 2051–2062 (1998).
[CrossRef]

Hiltunen, L.

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

Hoffman, A.

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Howard, S.

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Jacob, Z.

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006).
[CrossRef] [PubMed]

Jang, S.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Johansson, B.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Julien, C.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992).
[CrossRef]

Justice, B.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Kildishev, A.

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).

X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010).
[CrossRef]

K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

E. Narimanov and A. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
[CrossRef]

A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008).
[CrossRef]

V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16, 1186–1195 (2008).
[CrossRef] [PubMed]

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007).
[CrossRef]

V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005).
[CrossRef]

Kim, J.

Kim, J.-Y.

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

Kim, T.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Lal, S.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

Lawrence, C.

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt.45, 2051–2062 (1998).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Leskela, M.

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

Lim, K.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Lin, Y.-R.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Linden, S.

G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32, 53–55 (2007).
[CrossRef]

C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science315, 47–49 (2007).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

Liu, J.

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).

Liu, Z.

X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

Livenere, J.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Logothetidis, S.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

S. Maier, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).

Makela, M.

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

McKenzie, D.

C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun.85, 70–82 (1991).
[CrossRef]

McPhedran, R.

C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun.85, 70–82 (1991).
[CrossRef]

Minami, T.

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25, 38–44 (2000).
[CrossRef]

Misra, V.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Mock, J.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Mundle, R.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Naik, G.

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1, 1090–1099 (2011).
[CrossRef]

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

Narimanov, E.

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).

E. Narimanov and A. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
[CrossRef]

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006).
[CrossRef] [PubMed]

V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71, 201101 (2005).
[CrossRef]

Ni, X.

X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010).
[CrossRef]

Niinisto, L.

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

Noginov, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Nykanen, E.

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

Park, D.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Park, J.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Patsalas, P.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

Pendry, J.

T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71, 201101 (2005).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Pradhan, A.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Ramakrishna, S.

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

Rockett, A.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Roh, J.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Salakhutdinov, I.

J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

Sambles, J.

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt.45, 2051–2062 (1998).
[CrossRef]

Sarychev, A.

Schurig, D.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V.

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16, 1186–1195 (2008).
[CrossRef] [PubMed]

V. Shalaev, “Transforming light,” Science322, 384–386 (2008).
[CrossRef] [PubMed]

A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008).
[CrossRef]

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007).
[CrossRef]

V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005).
[CrossRef]

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009).

Sivco, D.

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Smith, D.

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

Smolyaninov, I.

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).

Soininen, P.

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

Soukoulis, C.

C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science315, 47–49 (2007).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32, 53–55 (2007).
[CrossRef]

Starr, A.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Stewart, W.

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

Suh, Y.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Sundgren, J.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Wasserman, D.

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Wegener, M.

A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1, 883–889 (2011).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32, 53–55 (2007).
[CrossRef]

C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science315, 47–49 (2007).
[CrossRef] [PubMed]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Wiltshire, M.

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

Wu, S.-T.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

Yagil, Y.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992).
[CrossRef]

Yeo, I.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Yoon, H.

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

Yuan, H.

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Zhu, G.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Appl. Phys. A (1)

X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A100, 365–374 (2010).
[CrossRef]

Appl. Phys. B (1)

Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

E. Narimanov and A. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
[CrossRef]

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Arxiv preprint arXiv (2)

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011).

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).

J. Appl. Phys. (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

J. Mod. Opt. (2)

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt.45, 2051–2062 (1998).
[CrossRef]

J. Vac. Sci. Technol. A (2)

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

S. Aouadi and M. Debessai, “Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A22, 1975–1979 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Laser Photonics Rev. (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Metamaterials (1)

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

MRS Bull. (1)

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25, 38–44 (2000).
[CrossRef]

Nano Lett. (1)

K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Nanotechnol. (1)

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,”Nanotechnol.21, 115201 (2010).

Nat. Mater. (1)

A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6, 946–950 (2007).
[CrossRef] [PubMed]

Nat. Photonics (2)

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007).
[CrossRef]

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

Nature (1)

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun.85, 70–82 (1991).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Rev. B (4)

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46, 2503–2511 (1992).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71, 201101 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi (RRL) (1)

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

Science (9)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006).
[CrossRef] [PubMed]

C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science315, 47–49 (2007).
[CrossRef] [PubMed]

V. Shalaev, “Transforming light,” Science322, 384–386 (2008).
[CrossRef] [PubMed]

Thin Solid Films (1)

L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films166, 149–154 (1988).
[CrossRef]

Other (5)

D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36.

X. Ni, Z. Liu, and A.V. Kildishev, “PhotonicsDB: Optical Constants,” http://nanohub.org/resources/PhotonicsDB . (doi:10254/nanohub-r3692.10) (2010).

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009).

S. Maier, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Dielectric functions of sputter-deposited titanium nitride films retrieved by spectroscopic ellipsometry measurements. The films were deposited on c-sapphire substrates by DC reactive magnetron sputtering at 300 oC with different flow ratios (sccm:sccm) of argon and nitrogen.

Fig. 2
Fig. 2

Dielectric functions of titanium nitride films deposited at 300 °C and 500 °C retrieved by spectroscopic ellipsometry measurements. The films were deposited with the flow ratio of argon and nitrogen set to 4:6.

Fig. 3
Fig. 3

Dielectric functions of titanium nitride films deposited at 300 °C on glass and c-sapphire substrates.

Fig. 4
Fig. 4

X-ray diffraction plot showing the diffraction intensity from a TiN thin film grown on c-sapphire. The peaks in the intensity correspond to the crystal planes annotated. The inset shows the intensity plot for an asymmetric-phi scan with 2θ set to the 200 reflection of TiN and off-plane tilt angle (χ) set to 54.7 degrees corresponding to interplanar angle between (111) and (200) planes.

Fig. 5
Fig. 5

Characterization of 30 nm thick TiN film deposited on a c-sapphire substrate. a) Atomic force microscope (AFM) image b) Scanning electron micrograph.

Fig. 6
Fig. 6

Comparison of the performance characteristics of SPP waveguides formed by the interface of air with TiN-, gold (JC)- and gold with loss factor of 3.5: a) Propagation length (1/e field decay length along the propagation direction) b) Confinement width (1/e field decay widths on each side normal to the interface).

Fig. 7
Fig. 7

Propagation length of the lowest order symmetric SPP mode in a metal/air/metal waveguide with an air gap of 300 nm for different metals: TiN, gold (JC) and gold with loss factor of 3.5.

Fig. 8
Fig. 8

Localized-surface-plasmon applications: Calculated field enhancement at the surface of TiN and gold nanospheres calculated using quasistatic dipole approximation.

Fig. 9
Fig. 9

Figures-of-merit for HMMs formed by alternating, sub-wavelength layers of different metal/dielectric combinations (TiN/AlN, silver/alumina and gold/alumina).

Fig. 10
Fig. 10

Dielectric function of TiN in comparison with conventional plasmonic materials: gold and silver (data adapted from JC [21, 39]).

Fig. 11
Fig. 11

Angular reflectance of dielectric (ZEP, electron-beam resist) gratings formed on top of a 30 nm thick film of TiN. The inset shows the geometry of the structure. The measured (solid lines) and calculated (dashed lines) reflectances are plotted against angle of incidence for two different wavelengths.

Metrics