Abstract

A new phase change material Ge2Sb1.5Bi0.5Te5 (GSBT) with good optothermal effect has been developed as an inorganic photoresist. Masks based on the material can be easily fabricated by home-built laser direct writing (LDW) equipment, and as a result mask patterns have been successfully transferred onto Si substrates by reactive ion etching techniques. Experimental results indicate that maximum etching selectivity of Si to GSBT reaches up to 524:1, which is comparable with the traditional organic photoresists, and the high ratio is also explained theoretically. Because of the merits of the inorganic photoresist, it might prove useful in silicon-based microelectronics

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature406(6799), 1027–1031 (2000).
    [CrossRef] [PubMed]
  2. M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
    [CrossRef]
  3. D. V. Myagkov, M. O. Nestoklon, and E. L. Portnoi, “Simple and effective algorithm of inorganic resist As2S3 development simulation,” Proc. SPIE6732, 67321V (2007).
    [CrossRef]
  4. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
    [CrossRef]
  5. V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
    [CrossRef]
  6. V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
    [CrossRef]
  7. V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).
  8. K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009).
    [CrossRef]
  9. B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
    [CrossRef]
  10. W. P. Risk, C. T. Rettner, and S. Raoux, “Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method,” Appl. Phys. Lett.94(10), 101906 (2009).
    [CrossRef]
  11. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
    [CrossRef]
  12. H. Jain and M. Vlcek, “Glasses for lithography,” J. Non-Cryst. Solids354(12-13), 1401–1406 (2008).
    [CrossRef]
  13. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
    [CrossRef] [PubMed]
  14. M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
    [CrossRef]
  15. Z. M. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” Phys. Rev. Lett.98(5), 055505 (2007).
    [CrossRef] [PubMed]
  16. K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
    [CrossRef]
  17. C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
    [CrossRef]
  18. J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
    [CrossRef]
  19. S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
    [CrossRef]
  20. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
    [CrossRef] [PubMed]
  21. J. H. Kim, “Effects of a metal layer on selective etching of a Ge5Sb75Te20 phase-change film,” Semicond. Sci. Technol.23(10), 105009 (2008).
    [CrossRef]
  22. T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
    [CrossRef]
  23. W. K. Njoroge, H. W. Woltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230–232 (2002).
    [CrossRef]
  24. G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
    [CrossRef]
  25. R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995).
    [CrossRef]

2010

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

2009

W. P. Risk, C. T. Rettner, and S. Raoux, “Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method,” Appl. Phys. Lett.94(10), 101906 (2009).
[CrossRef]

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009).
[CrossRef]

2008

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

H. Jain and M. Vlcek, “Glasses for lithography,” J. Non-Cryst. Solids354(12-13), 1401–1406 (2008).
[CrossRef]

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
[CrossRef]

J. H. Kim, “Effects of a metal layer on selective etching of a Ge5Sb75Te20 phase-change film,” Semicond. Sci. Technol.23(10), 105009 (2008).
[CrossRef]

G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
[CrossRef]

2007

D. V. Myagkov, M. O. Nestoklon, and E. L. Portnoi, “Simple and effective algorithm of inorganic resist As2S3 development simulation,” Proc. SPIE6732, 67321V (2007).
[CrossRef]

V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).

Z. M. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” Phys. Rev. Lett.98(5), 055505 (2007).
[CrossRef] [PubMed]

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
[CrossRef]

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
[CrossRef]

2004

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

2002

W. K. Njoroge, H. W. Woltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230–232 (2002).
[CrossRef]

2001

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

2000

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

1997

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

1995

R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995).
[CrossRef]

Ahuja, R.

Z. M. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” Phys. Rev. Lett.98(5), 055505 (2007).
[CrossRef] [PubMed]

Akita, J.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
[CrossRef]

Ankudinov, A. L.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

Anzai, Y.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

Arsh, A.

V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
[CrossRef]

Bae, W. J.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Bar, I.

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

Boer, M. D.

R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995).
[CrossRef]

Chen, B.

G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
[CrossRef]

Cheng, H. W.

Chiang, H.-P.

Chiu, K. P.

K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009).
[CrossRef]

Choi, B. J.

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

Choi, S.

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
[CrossRef]

Choi, S. M.

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

Choi, S. Y.

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

Chu, C. H.

Da Shiue, C.

Dror, R.

V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
[CrossRef]

Eisenberg, N. P.

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

Elwenspoek, M.

R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995).
[CrossRef]

Eom, T.

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

Feng, G. M.

G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
[CrossRef]

Feng, S. L.

G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
[CrossRef]

Fons, P.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

Frenkel, A. I.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

Gan, C. L.

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

Giannelis, E. P.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Hwang, C. S.

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

Indutnyy, I. Z.

V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).

Ito, T.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

Jain, H.

H. Jain and M. Vlcek, “Glasses for lithography,” J. Non-Cryst. Solids354(12-13), 1401–1406 (2008).
[CrossRef]

Jansen, H.

R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995).
[CrossRef]

Jeong, T. H.

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

Kang, D. M.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Kang, Y.

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
[CrossRef]

Kang, Y. S.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Kasai, T.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
[CrossRef]

Khang, Y.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Kim, C.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Kim, D.

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
[CrossRef]

Kim, I. S.

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

Kim, J. H.

J. H. Kim, “Effects of a metal layer on selective etching of a Ge5Sb75Te20 phase-change film,” Semicond. Sci. Technol.23(10), 105009 (2008).
[CrossRef]

Kim, K. B.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Kim, K. H. P.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Kim, K. M.

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

Kim, S. J.

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

Kim, S. K.

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

Kim, S. Y.

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

Kitagawa, A.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
[CrossRef]

Klebanov, M.

V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
[CrossRef]

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

Krysak, M.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Lafferty, N.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Lai, K. F.

K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009).
[CrossRef]

Lee, C.

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
[CrossRef]

Lee, J.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
[CrossRef]

Lee, K. L.

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

Lee, M. L.

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

Lee, T. Y.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Legtenberg, R.

R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995).
[CrossRef]

Litvin, O. S.

V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).

Liu, B.

G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
[CrossRef]

Lyubin, V.

V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
[CrossRef]

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

Manevich, M.

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

Mansuripur, M.

Min’ko, V. I.

V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).

Minemura, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

Miyamoto, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

Muhamad Daud, S. B.

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

Myagkov, D. V.

D. V. Myagkov, M. O. Nestoklon, and E. L. Portnoi, “Simple and effective algorithm of inorganic resist As2S3 development simulation,” Proc. SPIE6732, 67321V (2007).
[CrossRef]

Nakayama, K.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
[CrossRef]

Nam, S. W.

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Nestoklon, M. O.

D. V. Myagkov, M. O. Nestoklon, and E. L. Portnoi, “Simple and effective algorithm of inorganic resist As2S3 development simulation,” Proc. SPIE6732, 67321V (2007).
[CrossRef]

Njoroge, W. K.

W. K. Njoroge, H. W. Woltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230–232 (2002).
[CrossRef]

Ober, C. K.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Okazaki, S.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

Park, S. J.

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

Portnoi, E. L.

D. V. Myagkov, M. O. Nestoklon, and E. L. Portnoi, “Simple and effective algorithm of inorganic resist As2S3 development simulation,” Proc. SPIE6732, 67321V (2007).
[CrossRef]

Raoux, S.

W. P. Risk, C. T. Rettner, and S. Raoux, “Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method,” Appl. Phys. Lett.94(10), 101906 (2009).
[CrossRef]

Rettner, C. T.

W. P. Risk, C. T. Rettner, and S. Raoux, “Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method,” Appl. Phys. Lett.94(10), 101906 (2009).
[CrossRef]

Rha, S. H.

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

Risk, W. P.

W. P. Risk, C. T. Rettner, and S. Raoux, “Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method,” Appl. Phys. Lett.94(10), 101906 (2009).
[CrossRef]

Rosenwaks, S.

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

Schwartz, E.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Seo, H.

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

Sfez, B.

V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
[CrossRef]

Shepeliavyi, P. E.

V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).

Shi, L. P.

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

Shintani, T.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

Smith, B.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Song, Z. T.

G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
[CrossRef]

Sun, Z. M.

Z. M. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” Phys. Rev. Lett.98(5), 055505 (2007).
[CrossRef] [PubMed]

Takata, M.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
[CrossRef]

Ting, L. H.

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

Tominaga, J.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

Trikeriotis, M.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Tsai, D. P.

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009).
[CrossRef]

Tseng, M. L.

Uruga, T.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

Ushiyama, J.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

Vlcek, M.

H. Jain and M. Vlcek, “Glasses for lithography,” J. Non-Cryst. Solids354(12-13), 1401–1406 (2008).
[CrossRef]

Woltgens, H. W.

W. K. Njoroge, H. W. Woltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230–232 (2002).
[CrossRef]

Wuttig, M.

W. K. Njoroge, H. W. Woltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230–232 (2002).
[CrossRef]

Xie, P.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Yen, S. C.

K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009).
[CrossRef]

Yong, K. T.

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

Yoon, S. M.

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

Yu, B. G.

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

Zhou, J.

Z. M. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” Phys. Rev. Lett.98(5), 055505 (2007).
[CrossRef] [PubMed]

Zimmerman, P. A.

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

Appl. Phys. Lett.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

V. Lyubin, A. Arsh, M. Klebanov, R. Dror, and B. Sfez, “Nonlinear photoresists for maskless photolithography on the basis of Ag-doped As2S3 glassy films,” Appl. Phys. Lett.92(1), 011118 (2008).
[CrossRef]

B. J. Choi, S. Choi, T. Eom, S. H. Rha, K. M. Kim, and C. S. Hwang, “Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation,” Appl. Phys. Lett.97(13), 132107 (2010).
[CrossRef]

W. P. Risk, C. T. Rettner, and S. Raoux, “Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method,” Appl. Phys. Lett.94(10), 101906 (2009).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett.85(4), 639–641 (2004).
[CrossRef]

C. Kim, D. M. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, “Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices,” Appl. Phys. Lett.94(19), 193504 (2009).
[CrossRef]

Appl. Surf. Sci.

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, “GeSbTe deposition for the PRAM application,” Appl. Surf. Sci.253(8), 3969–3976 (2007).
[CrossRef]

J. Electrochem. Soc.

R. Legtenberg, H. Jansen, M. D. Boer, and M. Elwenspoek, “Anisotrapic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures,” J. Electrochem. Soc.142(6), 2020–2028 (1995).
[CrossRef]

J. Non-Cryst. Solids

H. Jain and M. Vlcek, “Glasses for lithography,” J. Non-Cryst. Solids354(12-13), 1401–1406 (2008).
[CrossRef]

J. Phys. D Appl. Phys.

K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys.40(17), 5061–5065 (2007).
[CrossRef]

M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. Muhamad Daud, and L. P. Shi, “Crystalline and thermal stability of Sn-doped Ge2Sb2Te5 phase change material,” J. Phys. D Appl. Phys.41(21), 215402 (2008).
[CrossRef]

J. Vac. Sci. Technol. A

W. K. Njoroge, H. W. Woltgens, and M. Wuttig, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230–232 (2002).
[CrossRef]

J. Vac. Sci. Technol. B

V. Lyubin, M. Klebanov, I. Bar, S. Rosenwaks, N. P. Eisenberg, and M. Manevich, “Novel effects in inorganic As50Se50 photoresists and their application in micro-optics,” J. Vac. Sci. Technol. B15(4), 823–827 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

T. H. Jeong, H. Seo, K. L. Lee, S. M. Choi, S. J. Kim, and S. Y. Kim, “Study of oxygen-doped GeSbTe film and its effect as an interface layer on the recording properties in the blue wavelength,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1609–1612 (2001).
[CrossRef]

Microelectron. Eng.

G. M. Feng, B. Liu, Z. T. Song, S. L. Feng, and B. Chen, “Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories,” Microelectron. Eng.85(8), 1699–1704 (2008).
[CrossRef]

Nat. Mater.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater.3(10), 703–708 (2004).
[CrossRef] [PubMed]

Nature

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Rev.

K. P. Chiu, K. F. Lai, S. C. Yen, and D. P. Tsai, “Surface plasmon polariton coupling between nano recording marks and their effect on optical read-out signal,” Opt. Rev.16(3), 326–331 (2009).
[CrossRef]

Phys. Rev. Lett.

Z. M. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” Phys. Rev. Lett.98(5), 055505 (2007).
[CrossRef] [PubMed]

Proc. SPIE

M. Trikeriotis, W. J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P. A. Zimmerman, C. K. Ober, and E. P. Giannelis, “Development of an inorganic photoresist for DUV, EUV, and electron beam imaging,” Proc. SPIE7639, 76390E (2010).
[CrossRef]

D. V. Myagkov, M. O. Nestoklon, and E. L. Portnoi, “Simple and effective algorithm of inorganic resist As2S3 development simulation,” Proc. SPIE6732, 67321V (2007).
[CrossRef]

Semicond. Phys., Quantum Electron. Optoelectron.

V. I. Min’ko, P. E. Shepeliavyi, I. Z. Indutnyy, and O. S. Litvin, “Fabrication of silicon grating structures using interference lithography and chalcogenide inorganic photoresist,” Semicond. Phys., Quantum Electron. Optoelectron.10(1), 40–44 (2007).

Semicond. Sci. Technol.

S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5,” Semicond. Sci. Technol.23(10), 105006 (2008).
[CrossRef]

J. H. Kim, “Effects of a metal layer on selective etching of a Ge5Sb75Te20 phase-change film,” Semicond. Sci. Technol.23(10), 105009 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic showing the experiment steps followed in the study. GSBT resist is patterned by LDW and phase change etching. RIE is applied to transfer formed patterns onto the Si.

Fig. 2
Fig. 2

The SEM images of as-deposited (a) and annealed (b) GSBT thin films, (c) XRD patterns of as-deposited and annealed GSBT, (d) the UV-Visible absorption spectra of GSBT.

Fig. 3
Fig. 3

TEM image and SAED patterns of GSBT resist written by LDW with energy density 1.50 × 104 J/cm2.

Fig. 4
Fig. 4

Development properties of different phase of GSBT films versus development time in the 1.0 wt % KOH solution.

Fig. 5
Fig. 5

(a) AFM image of sample in which selected crystalline regions were induced by LDW. (b) The cross section profile of the laser-induced sample. (c) The appearance of the GSBT sample which has been developed by KOH, and its cross section profile is shown in the (d).

Fig. 6
Fig. 6

The effect of SF6 gas flow rate (a), etching power (b), and etching pressure(c) on the etching rates and etching selectivity of Si to GSBT films. (In order to show the changing trends of all data clearly in the same figure, all the etching rates of GSBT are magnified 20 times).

Fig. 7
Fig. 7

(a) SEM image of Si etched by RIE with the GSBT as photoresist. (b) AFM image of the etched groove. (c) Cross section profile of an etched groove.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

+ SF x g  SF ( x 1 ) g +  F g + e ( x= 3~6, g represents materials are in gaseous state. ) Si +4F SiF 4 .

Metrics