Abstract

We report on optical channel waveguides in zinc selenide (ZnSe) single crystal fabricated by using mask-assisted 500 keV protons implantation at a fluence of 6 × 1016 ions/cm2. The formed waveguides are with typical “enhanced well” + “negative barrier” refractive index profile. The numerical calculated modal profiles are in good agreement with the measured near-field intensity distribution of the guided light. The propagation loss of the channel waveguide is determined to be ~4 dB/cm after thermal annealing treatment in air.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation

Yingying Ren, Yang Tan, Feng Chen, Daniel Jaque, Huaijin Zhang, Jiyang Wang, and Qingming Lu
Opt. Express 18(15) 16258-16263 (2010)

Optical channel waveguide in Nd/Ce codoped YAG laser crystal produced by carbon ion implantation

Yan-Xia Kong, Feng Chen, Daniel Jaque, Qing-Ming Lu, and Hong-Ji Ma
Appl. Opt. 48(23) 4514-4518 (2009)

Optical waveguides in Nd:GGG crystals produced by H+ or C3+ ion implantation

Ying-Ying Ren, Feng Chen, Qing-Ming Lu, and Hong-Ji Ma
Appl. Opt. 49(11) 2085-2089 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
    [Crossref]
  2. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
    [Crossref] [PubMed]
  3. R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
    [Crossref]
  4. X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
    [Crossref]
  5. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
    [Crossref]
  6. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
    [Crossref] [PubMed]
  7. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
    [Crossref]
  8. B. S. Patel, “Optical suitability of window materials for CO2 lasers,” Appl. Opt. 16(5), 1232–1235 (1977).
    [Crossref] [PubMed]
  9. E. M. Gavrishchuk and É. V. Yashina, “Zinc sulfide and zinc selenide optical elements for IR engineering,” J. Opt. Technol. 71(12), 822–827 (2004).
    [Crossref]
  10. G. Lifante, Integrated Photonics: Fundamentals (Wiley, West Sussex, UK, 2003).
  11. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, New York, 1999).
  12. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [Crossref]
  13. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  14. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
    [Crossref]
  15. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
    [Crossref]
  16. I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
    [Crossref]
  17. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
    [Crossref]
  18. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [Crossref]
  19. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
    [Crossref] [PubMed]
  20. G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
    [Crossref] [PubMed]
  21. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [Crossref] [PubMed]
  22. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. DOI .
    [Crossref]
  23. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
    [Crossref]
  24. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK, 1994).
  25. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [Crossref]
  26. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [Crossref]
  27. G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express 20(4), 4444–4453 (2012).
    [Crossref] [PubMed]
  28. B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
    [Crossref]
  29. M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
    [Crossref]
  30. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
    [Crossref] [PubMed]
  31. J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
    [Crossref]
  32. S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
    [Crossref]
  33. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
    [Crossref]
  34. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  35. J. F. Ziegler, computer code, SRIM, http://www.srim.org .
  36. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992).
    [Crossref] [PubMed]

2012 (1)

2011 (7)

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

2010 (3)

2009 (2)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
[Crossref] [PubMed]

2008 (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
[Crossref]

2007 (3)

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
[Crossref] [PubMed]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

2006 (1)

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

2004 (1)

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

1998 (4)

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

1996 (1)

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

1992 (1)

1987 (1)

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

1985 (2)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[Crossref]

1977 (1)

Agulló-López, F.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

Aitchison, J. S.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Armenise, M. N.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Atuchin, V. V.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Avrahami, Y.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Bacher, G.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Bain, F. M.

Banyasz, I.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Bardyszewski, W.

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Beecher, S. J.

Bellanca, G.

Bentini, G. G.

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Berneschi, S.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Bianconi, M.

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Bookey, H. T.

Brenci, M.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Brown, C. T.

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Chen, F.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
[Crossref]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. DOI .
[Crossref]

Chiarini, M.

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

De Nicola, P.

Denbaars, S. P.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Dierolf, V.

Eisert, D.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Farrell, R. M.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Feezell, D. F.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Forchel, A.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Fried, M.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Fujito, K.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

García, G.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

García-Blanco, S.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

García-Navarro, A.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

Garmire, E.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Gavrishchuk, E. M.

Gilchrist, J. F.

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Haeger, D. A.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Hahn, B.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Hartmann, H.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Hommel, D.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Hsu, P. S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Huang, Q.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
[Crossref]

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Jaque, D.

Kaiser, S.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Kar, A. K.

Khanh, N. Q.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Kim, B. G.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

Kühnelt, M.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Kuleshov, N. V.

Kumnorkaew, P.

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Lagatsky, A. A.

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Landwehr, G.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Leichtner, T.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Li, X.-H.

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Liarokapis, E.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Liu, G.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

Liu, P.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
[Crossref]

Liu, X. H.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
[Crossref]

Lu, Q.

Macdonald, J. R.

Mawst, L. J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Meilán, P. F.

Mendez, C.

Menin, A.

Merchant, C.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

Metzger, T. H.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Montanari, G. B.

Nakamura, S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Nubile, A.

Nunzi Conti, G.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Olivares, J.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

Parini, A.

Park, J. H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Passaro, V. M. N.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Paszti, F.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Patel, B. S.

Peisl, J.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Pelli, S.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Poplawsky, J. D.

Psaila, N. D.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Re, Y.-K.

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Righini, G. C.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Rodenas, A.

Roso, L.

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Sauer, W.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Savatinova, I.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Savova, I.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Schüll, K.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Seaton, C. T.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[Crossref]

Shibata, N.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Sibbett, W.

Siche, D.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Song, R.

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Speck, J. S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Stegeman, G. I.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[Crossref]

Sugliani, S.

Tan, Y.

Tansu, N.

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[Crossref]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

Thomson, R. R.

Torchia, G. A.

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Wagner, H. P.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Wang, L.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
[Crossref]

Wang, X. L.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
[Crossref]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Watterich, A.

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

Wenisch, H.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Yashina, É. V.

Yevick, D.

Zembutsu, S.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Zhang, J.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[Crossref]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Zhao, H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

Zhao, J. H.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
[Crossref]

Ziling, C. C.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Zolotoyabko, E.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (6)

S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007).
[Crossref]

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99(17), 171115 (2011).
[Crossref]

Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
[Crossref]

IEEE Photon. J. (1)

X.-H. Li, R. Song, Y.-K. Re, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

J. Appl. Phys. (3)

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[Crossref]

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[Crossref]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

J. Opt. Technol. (1)

J. Phys. D (1)

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Laser Photon. Rev. (1)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. DOI .
[Crossref]

Nanoscale Res. Lett. (1)

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (2)

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[Crossref]

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, L. Wang, and X. L. Wang, “The array waveguides formed in LiNbO3 crystal by oxygen-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 268(19), 2923–2925 (2010).
[Crossref]

Opt. Acta (Lond.) (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Semicond. Sci. Technol. (1)

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Other (4)

G. Lifante, Integrated Photonics: Fundamentals (Wiley, West Sussex, UK, 2003).

E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, New York, 1999).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK, 1994).

J. F. Ziegler, computer code, SRIM, http://www.srim.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic plot of the channel waveguides formation process in ZnSe crystal with photoresist masking, (b) magnification of a cross section of the channel waveguides sample and (c) the microscope image of the transverse cross section of the channel waveguide after removing the photoresist mask.
Fig. 2
Fig. 2 The obtained refractive index profile of the ZnSe planar waveguide fabricated by 500keV proton implantation at the fluence of 6 × 1016 /cm2 based on RCM.
Fig. 3
Fig. 3 (a) 2D refractive index profile, (b) calculated modal profiles and (c) measured near-field intensity distributions of the ZnSe channel waveguides at the wavelength of 632.8 nm.
Fig. 4
Fig. 4 Relative intensity of output light as a function of heating time obtained for ZnSe channel waveguide fabricated by 500keV protons implantation after thermal annealing treatment at 200 °C in air. The propagation loss of the waveguide was determined to be ~4 dB/cm.
Fig. 5
Fig. 5 Relative atom displacement of the original lattice versus penetration depth of ions in ZnSe crystal induced by 500keV proton implantation at the fluence of 6 × 1016 ions/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α= 4.34 L { lnRln[ 1 K (1 1 K 2 ) ] }
R= ( n eff 1 n eff +1 ) 2
K= I max I min I max + I min

Metrics