Abstract

Oxide crystals doped with Ce3+ are useful in areas such as scintillators and passive optical sources. Scintillator materials require high light-yield and fast luminescence decay time. However, when the crystalline quality is degraded by defects created during the crystal growth process, afterglow from the crystals is observed. The persistent phosphorescence observed in Lu2SiO5 doped with Ce3+ ions has been investigated in detail and a model is proposed to explain the mechanism responsible for the phosphorescence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).
  2. L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
    [CrossRef]
  3. E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
    [CrossRef]
  4. D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
    [CrossRef]
  5. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1999), Chap. 7.
  6. S. W. S. Mckeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985), 143–148.
  7. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  8. N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
    [CrossRef]
  9. N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin.87–89, 1076–1078 (2000).
    [CrossRef]
  10. M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
    [CrossRef]
  11. L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
    [CrossRef]
  12. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989), Chap. 5.
  13. M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B62(16), 10766–10773 (2000).
    [CrossRef]
  14. D. Jia, X. Wang, W. Jia, and W. M. Yen, “Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4,” J. Lumin.119–120, 55–58 (2006).
    [CrossRef]
  15. P. Dorenbos, “Absolute location of lanthanide energy levels and the performance of phosphors,” J. Lumin.122–123, 315–317 (2007).
    [CrossRef]
  16. T. Takeyama, T. Nakamura, N. Takahashi, and M. Ohta, “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SiAl2O4,” Solid State Sci.6(4), 345–348 (2004).
    [CrossRef]
  17. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, Berlin, 1993), Chaps. 2 and 7.
  18. M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
    [CrossRef]

2007 (1)

P. Dorenbos, “Absolute location of lanthanide energy levels and the performance of phosphors,” J. Lumin.122–123, 315–317 (2007).
[CrossRef]

2006 (2)

D. Jia, X. Wang, W. Jia, and W. M. Yen, “Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4,” J. Lumin.119–120, 55–58 (2006).
[CrossRef]

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

2005 (2)

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
[CrossRef]

2004 (1)

T. Takeyama, T. Nakamura, N. Takahashi, and M. Ohta, “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SiAl2O4,” Solid State Sci.6(4), 345–348 (2004).
[CrossRef]

2003 (1)

L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
[CrossRef]

2002 (1)

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
[CrossRef]

2000 (3)

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin.87–89, 1076–1078 (2000).
[CrossRef]

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B62(16), 10766–10773 (2000).
[CrossRef]

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
[CrossRef]

1999 (1)

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Bartram, R. H.

L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
[CrossRef]

Basun, S. A.

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

Bennett, B. L.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
[CrossRef]

Cooke, D. W.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “Absolute location of lanthanide energy levels and the performance of phosphors,” J. Lumin.122–123, 315–317 (2007).
[CrossRef]

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

Glodo, J.

L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
[CrossRef]

Gourier, D.

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Guillot-Noel, O.

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Hamilton, D. S.

L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
[CrossRef]

Hayashi, T.

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B62(16), 10766–10773 (2000).
[CrossRef]

Hirao, K.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Honda, M.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
[CrossRef]

Imbusch, G. F.

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

Iwanaga, M.

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B62(16), 10766–10773 (2000).
[CrossRef]

Jia, D.

D. Jia, X. Wang, W. Jia, and W. M. Yen, “Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4,” J. Lumin.119–120, 55–58 (2006).
[CrossRef]

Jia, W.

D. Jia, X. Wang, W. Jia, and W. M. Yen, “Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4,” J. Lumin.119–120, 55–58 (2006).
[CrossRef]

Kahn-Harari, K.

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Kaminaga, K.

M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
[CrossRef]

Kappers, L. A.

L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
[CrossRef]

Kodama, N.

M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
[CrossRef]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
[CrossRef]

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin.87–89, 1076–1078 (2000).
[CrossRef]

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Lempicki, A.

L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
[CrossRef]

Masui, Y.

M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
[CrossRef]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

McClellan, K. J.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Nakamura, T.

T. Takeyama, T. Nakamura, N. Takahashi, and M. Ohta, “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SiAl2O4,” Solid State Sci.6(4), 345–348 (2004).
[CrossRef]

Ohta, M.

T. Takeyama, T. Nakamura, N. Takahashi, and M. Ohta, “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SiAl2O4,” Solid State Sci.6(4), 345–348 (2004).
[CrossRef]

Pelenc, D.

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Pidol, L.

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Qiu, J.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Roper, J. M.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
[CrossRef]

Sakuta, S.

M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
[CrossRef]

Takahashi, N.

T. Takeyama, T. Nakamura, N. Takahashi, and M. Ohta, “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SiAl2O4,” Solid State Sci.6(4), 345–348 (2004).
[CrossRef]

Takahashi, T.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
[CrossRef]

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Takeyama, T.

T. Takeyama, T. Nakamura, N. Takahashi, and M. Ohta, “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SiAl2O4,” Solid State Sci.6(4), 345–348 (2004).
[CrossRef]

Tanii, Y.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
[CrossRef]

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin.87–89, 1076–1078 (2000).
[CrossRef]

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

van der Kolk, E.

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

van Eijk, C. W. E.

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

Viana, B.

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Wang, X.

D. Jia, X. Wang, W. Jia, and W. M. Yen, “Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4,” J. Lumin.119–120, 55–58 (2006).
[CrossRef]

Watanabe, M.

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B62(16), 10766–10773 (2000).
[CrossRef]

Whittaker, M. T.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
[CrossRef]

Yamaga, M.

M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
[CrossRef]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
[CrossRef]

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin.87–89, 1076–1078 (2000).
[CrossRef]

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Yen, W. M.

D. Jia, X. Wang, W. Jia, and W. M. Yen, “Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4,” J. Lumin.119–120, 55–58 (2006).
[CrossRef]

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

J. Lumin. (5)

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin.87–89, 1076–1078 (2000).
[CrossRef]

L. A. Kappers, R. H. Bartram, D. S. Hamilton, A. Lempicki, and J. Glodo, “Thermal quenching and electron traps in LSO,” J. Lumin.102–103, 162–165 (2003).
[CrossRef]

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites,” J. Lumin.92(1-2), 83–89 (2000).
[CrossRef]

D. Jia, X. Wang, W. Jia, and W. M. Yen, “Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4,” J. Lumin.119–120, 55–58 (2006).
[CrossRef]

P. Dorenbos, “Absolute location of lanthanide energy levels and the performance of phosphors,” J. Lumin.122–123, 315–317 (2007).
[CrossRef]

J. Phys. Chem. Solids (1)

L. Pidol, O. Guillot-Noel, K. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2SiO7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Phys. Rev. B (4)

M. Iwanaga, M. Watanabe, and T. Hayashi, “Charge separation of excitons and the radiative recombination process in PbBr2 crystals,” Phys. Rev. B62(16), 10766–10773 (2000).
[CrossRef]

M. Yamaga, Y. Masui, S. Sakuta, N. Kodama, and K. Kaminaga, “Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates,” Phys. Rev. B71(20), 205102 (2005).
[CrossRef]

E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A. Basun, G. F. Imbusch, and W. M. Yen, “5d electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5,” Phys. Rev. B71(16), 165120 (2005).
[CrossRef]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2Al2SiO7 melilite crystals,” Phys. Rev. B65(23), 235108 (2002).
[CrossRef]

Solid State Sci. (1)

T. Takeyama, T. Nakamura, N. Takahashi, and M. Ohta, “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SiAl2O4,” Solid State Sci.6(4), 345–348 (2004).
[CrossRef]

Other (5)

K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, Berlin, 1993), Chaps. 2 and 7.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989), Chap. 5.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1999), Chap. 7.

S. W. S. Mckeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985), 143–148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram showing a unit cell of the Lu2SiO5 crystal structure. Two lutetium sites are denoted by Lu(1) and Lu(2).

Fig. 2
Fig. 2

Absorption, luminescence, and excitation spectra observed in Ce3+-doped Lu2SiO5 at 10 K.

Fig. 3
Fig. 3

Temperature dependence of the decay time of the Ce3+ luminescence in Lu2SiO5. Solid curve is calculated using the equation of 1/ τ = 1/38 + 106/3.6 × exp(−6360/T).

Fig. 4
Fig. 4

Decay curves of the persistent phosphorescence observed at 300 and 500 K with the 355 nm excitation for Ce3+-doped Lu2SiO5.

Fig. 5
Fig. 5

Temperature dependence of the decay curve of the persistent phosphorescence observed with the 355 nm excitation for Ce3+-doped Lu2SiO5. The dash-dot curves are calculated using Eq. (1).

Fig. 6
Fig. 6

Temperature dependence of the integrated intensity of the decay curve in the time range from 1 to 103 s for Ce3+-doped Lu2SiO5. The components 1, 2 and 3 were estimated from the decomposed decay curve in Fig. 5.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(t)= A t {exp(t/ τ 1 )exp(t/ τ 2 )}

Metrics