Abstract

Red emitting CaTiO3:Pr phosphors with a nominal composition of Ca0.998+xPr0.002TiO3+δ (0.02≤x≤0.04) were prepared by solid state reactions with different thermal post treatments and characterized by X-ray diffraction, transmission electron microscopy and photoluminescence. The Ca excess exhibited complete solubility up to 4% in the samples treated at 1400 °C but segregation in the form of Ruddlesden-Popper phases (Ca3Ti2O7 - Ca4Ti3O10) was observed in samples prepared at 1500 °C. The increase in temperature for stoichiometric samples showed a monotonic increase of decay time due to the reduction of non-radiative recombination defects. It was found that the Ca excess favored the formation of oxygen vacancies which are known to act as trap. In the samples treated at 1400 °C, 3% of Ca excess showed to be the best concentration to increase the decay time of persistent luminescence. For the samples treated at 1500 °C, the segregation of Ruddlesden-Popper phases left a constant amount of Ca soluble in all the CaTiO3 samples. This constant concentration of Ca caused the same density of defects and, consequently, the same decay time in all samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  2. Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett.51(1), 14–18 (2001).
    [CrossRef]
  3. P. F. Smet, N. Avci, and D. Poelman, “Red persistent luminescence in Ca2SiS4:Eu,Nd,” J. Electrochem. Soc.156(4), H243–H248 (2009).
    [CrossRef]
  4. X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys.80(1), 1–5 (2003).
    [CrossRef]
  5. A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
    [CrossRef]
  6. D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
    [CrossRef]
  7. X.-J. Wang, D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
    [CrossRef]
  8. X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
    [CrossRef]
  9. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
    [CrossRef]
  10. Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
    [CrossRef]
  11. S. S. Chedha, D. W. Smith, A. Vecht, and C. S. Gibbons, “New and improved phosphors for low-voltage applications,” SID Int. Symp. Digest Tech. Papers51, 51–54 (1994).
  12. W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
    [CrossRef]
  13. S. M. Jacobsen, “Phosphors for full-color low-voltage field-emission displays,” J. Soc. Inf. Disp.4, 331–335 (1996).
  14. J.-C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
    [CrossRef]
  15. S. Yin, D. Chen, and W. Tang, “Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors,” J. Alloy. Comp.441(1-2), 327–331 (2007).
    [CrossRef]
  16. X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
    [CrossRef]
  17. X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
    [CrossRef]
  18. M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
    [CrossRef]
  19. A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
    [CrossRef]
  20. M. Čeh and D. Kolar, “Solubility of CaO in CaTiO3,” J. Mater. Sci.29(23), 6295–6300 (1994).
    [CrossRef]
  21. M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
    [CrossRef]
  22. U. Balachandran and N. G. Eror, “Electrical conductivity in calcium titanate with excess CaO,” Mater. Sci. Eng.54(2), 221–228 (1982).
    [CrossRef]
  23. S. N. Ruddlesden and P. Popper, “The compound Sr3Ti2O7 and its structure,” Acta Crystallogr.11(1), 54–55 (1958).
    [CrossRef]
  24. B. V. Beznosikov and K. S. Aleksandrov, “Perovskite-like crystals of the Ruddlesden-Popper series,” Crystallogr. Rep.45(5), 792–798 (2000).
    [CrossRef]
  25. W. Kwestroo and H. A. M. Paping, “The systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2,” J. Am. Ceram. Soc.42(6), 292–299 (1959).
    [CrossRef]
  26. S. Okamoto and H. Yamamoto, “Emission from BaTiO3:Pr3+ controlled by ionic radius of added trivalent ion,” J. Appl. Phys.91(8), 5492–5494 (2002).
    [CrossRef]

2011 (2)

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

2010 (1)

J.-C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

2009 (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

P. F. Smet, N. Avci, and D. Poelman, “Red persistent luminescence in Ca2SiS4:Eu,Nd,” J. Electrochem. Soc.156(4), H243–H248 (2009).
[CrossRef]

2007 (3)

S. Yin, D. Chen, and W. Tang, “Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors,” J. Alloy. Comp.441(1-2), 327–331 (2007).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

2006 (1)

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

2004 (1)

X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
[CrossRef]

2003 (3)

X.-J. Wang, D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

2002 (2)

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

S. Okamoto and H. Yamamoto, “Emission from BaTiO3:Pr3+ controlled by ionic radius of added trivalent ion,” J. Appl. Phys.91(8), 5492–5494 (2002).
[CrossRef]

2001 (1)

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett.51(1), 14–18 (2001).
[CrossRef]

2000 (2)

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

B. V. Beznosikov and K. S. Aleksandrov, “Perovskite-like crystals of the Ruddlesden-Popper series,” Crystallogr. Rep.45(5), 792–798 (2000).
[CrossRef]

1996 (2)

T. Matsuzawa, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

S. M. Jacobsen, “Phosphors for full-color low-voltage field-emission displays,” J. Soc. Inf. Disp.4, 331–335 (1996).

1994 (2)

S. S. Chedha, D. W. Smith, A. Vecht, and C. S. Gibbons, “New and improved phosphors for low-voltage applications,” SID Int. Symp. Digest Tech. Papers51, 51–54 (1994).

M. Čeh and D. Kolar, “Solubility of CaO in CaTiO3,” J. Mater. Sci.29(23), 6295–6300 (1994).
[CrossRef]

1991 (1)

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

1982 (1)

U. Balachandran and N. G. Eror, “Electrical conductivity in calcium titanate with excess CaO,” Mater. Sci. Eng.54(2), 221–228 (1982).
[CrossRef]

1959 (1)

W. Kwestroo and H. A. M. Paping, “The systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2,” J. Am. Ceram. Soc.42(6), 292–299 (1959).
[CrossRef]

1958 (1)

S. N. Ruddlesden and P. Popper, “The compound Sr3Ti2O7 and its structure,” Acta Crystallogr.11(1), 54–55 (1958).
[CrossRef]

Aleksandrov, K. S.

B. V. Beznosikov and K. S. Aleksandrov, “Perovskite-like crystals of the Ruddlesden-Popper series,” Crystallogr. Rep.45(5), 792–798 (2000).
[CrossRef]

Avci, N.

P. F. Smet, N. Avci, and D. Poelman, “Red persistent luminescence in Ca2SiS4:Eu,Nd,” J. Electrochem. Soc.156(4), H243–H248 (2009).
[CrossRef]

Bak, T.

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

Balachandran, U.

U. Balachandran and N. G. Eror, “Electrical conductivity in calcium titanate with excess CaO,” Mater. Sci. Eng.54(2), 221–228 (1982).
[CrossRef]

Bessière, A.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Beznosikov, B. V.

B. V. Beznosikov and K. S. Aleksandrov, “Perovskite-like crystals of the Ruddlesden-Popper series,” Crystallogr. Rep.45(5), 792–798 (2000).
[CrossRef]

Bos, A. J. J.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Ceh, M.

M. Čeh and D. Kolar, “Solubility of CaO in CaTiO3,” J. Mater. Sci.29(23), 6295–6300 (1994).
[CrossRef]

Chedha, S. S.

S. S. Chedha, D. W. Smith, A. Vecht, and C. S. Gibbons, “New and improved phosphors for low-voltage applications,” SID Int. Symp. Digest Tech. Papers51, 51–54 (1994).

Chen, D.

S. Yin, D. Chen, and W. Tang, “Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors,” J. Alloy. Comp.441(1-2), 327–331 (2007).
[CrossRef]

Chen, L.

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

Chen, T.

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Dennis, W. M.

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

Dorenbos, P.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Du, Y.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Elcombe, M. M.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

Eror, N. G.

U. Balachandran and N. G. Eror, “Electrical conductivity in calcium titanate with excess CaO,” Mater. Sci. Eng.54(2), 221–228 (1982).
[CrossRef]

Evans, D. R.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

Ge, W.

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Gibbons, C. S.

S. S. Chedha, D. W. Smith, A. Vecht, and C. S. Gibbons, “New and improved phosphors for low-voltage applications,” SID Int. Symp. Digest Tech. Papers51, 51–54 (1994).

Goodman, P.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

Hawkins, K. D.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

Jacobsen, S. M.

S. M. Jacobsen, “Phosphors for full-color low-voltage field-emission displays,” J. Soc. Inf. Disp.4, 331–335 (1996).

Jacquart, S.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Jia, D.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

X.-J. Wang, D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

Jia, W.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

Kisi, E. H.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

Kolar, D.

M. Čeh and D. Kolar, “Solubility of CaO in CaTiO3,” J. Mater. Sci.29(23), 6295–6300 (1994).
[CrossRef]

Kwestroo, W.

W. Kwestroo and H. A. M. Paping, “The systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2,” J. Am. Ceram. Soc.42(6), 292–299 (1959).
[CrossRef]

Lecointre, A.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Lin, Y.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett.51(1), 14–18 (2001).
[CrossRef]

Liu, H.

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

Lu, S.

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

Mao, L.-H.

X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
[CrossRef]

Matheson, S.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

Matsuzawa, T.

T. Matsuzawa, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Meltzer, R. S.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Nowotny, J.

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

Okamoto, S.

S. Okamoto and H. Yamamoto, “Emission from BaTiO3:Pr3+ controlled by ionic radius of added trivalent ion,” J. Appl. Phys.91(8), 5492–5494 (2002).
[CrossRef]

Pan, Y.

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Paping, H. A. M.

W. Kwestroo and H. A. M. Paping, “The systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2,” J. Am. Ceram. Soc.42(6), 292–299 (1959).
[CrossRef]

Poelman, D.

P. F. Smet, N. Avci, and D. Poelman, “Red persistent luminescence in Ca2SiS4:Eu,Nd,” J. Electrochem. Soc.156(4), H243–H248 (2009).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

Popper, P.

S. N. Ruddlesden and P. Popper, “The compound Sr3Ti2O7 and its structure,” Acta Crystallogr.11(1), 54–55 (1958).
[CrossRef]

Rekas, M.

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

Rodriguez, T.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

Ruddlesden, S. N.

S. N. Ruddlesden and P. Popper, “The compound Sr3Ti2O7 and its structure,” Acta Crystallogr.11(1), 54–55 (1958).
[CrossRef]

Smet, P. F.

P. F. Smet, N. Avci, and D. Poelman, “Red persistent luminescence in Ca2SiS4:Eu,Nd,” J. Electrochem. Soc.156(4), H243–H248 (2009).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

Smith, D. W.

S. S. Chedha, D. W. Smith, A. Vecht, and C. S. Gibbons, “New and improved phosphors for low-voltage applications,” SID Int. Symp. Digest Tech. Papers51, 51–54 (1994).

Sorrell, C. C.

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

Su, Q.

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Tang, W.

S. Yin, D. Chen, and W. Tang, “Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors,” J. Alloy. Comp.441(1-2), 327–331 (2007).
[CrossRef]

Tang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett.51(1), 14–18 (2001).
[CrossRef]

Van den Eeckhout, K.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

Vance, E. R.

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

Vecht, A.

S. S. Chedha, D. W. Smith, A. Vecht, and C. S. Gibbons, “New and improved phosphors for low-voltage applications,” SID Int. Symp. Digest Tech. Papers51, 51–54 (1994).

Viana, B.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Wang, J.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Wang, M.

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

Wang, X.

J.-C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Wang, X.-J.

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

X.-J. Wang, D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

White, T. J.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

Wu, M.

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Xu, H.

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Yamamoto, H.

S. Okamoto and H. Yamamoto, “Emission from BaTiO3:Pr3+ controlled by ionic radius of added trivalent ion,” J. Appl. Phys.91(8), 5492–5494 (2002).
[CrossRef]

Yang, C.

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Yang, L.-Z.

X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
[CrossRef]

Yang, S.-P.

X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
[CrossRef]

Yao, X.

J.-C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

Yen, W. M.

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

X.-J. Wang, D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

Yin, S.

S. Yin, D. Chen, and W. Tang, “Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors,” J. Alloy. Comp.441(1-2), 327–331 (2007).
[CrossRef]

Yu, X.-B.

X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
[CrossRef]

Zhang, J.

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

Zhang, J.-C.

J.-C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

Zhang, X.

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

Zhang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett.51(1), 14–18 (2001).
[CrossRef]

Zhang-Fan, L.-Z.

X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
[CrossRef]

Zhao, D.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Zhao, H.

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

Zhou, M. F.

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

Zhu, A.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

Zhu, J.

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

Acta Crystallogr. (1)

S. N. Ruddlesden and P. Popper, “The compound Sr3Ti2O7 and its structure,” Acta Crystallogr.11(1), 54–55 (1958).
[CrossRef]

Acta Crystallogr. B (1)

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B47(3), 305–314 (1991).
[CrossRef]

Crystallogr. Rep. (1)

B. V. Beznosikov and K. S. Aleksandrov, “Perovskite-like crystals of the Ruddlesden-Popper series,” Crystallogr. Rep.45(5), 792–798 (2000).
[CrossRef]

J. Alloy. Comp. (2)

J.-C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

S. Yin, D. Chen, and W. Tang, “Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors,” J. Alloy. Comp.441(1-2), 327–331 (2007).
[CrossRef]

J. Am. Ceram. Soc. (1)

W. Kwestroo and H. A. M. Paping, “The systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2,” J. Am. Ceram. Soc.42(6), 292–299 (1959).
[CrossRef]

J. Appl. Phys. (2)

S. Okamoto and H. Yamamoto, “Emission from BaTiO3:Pr3+ controlled by ionic radius of added trivalent ion,” J. Appl. Phys.91(8), 5492–5494 (2002).
[CrossRef]

D. Jia, W. Jia, D. R. Evans, W. M. Dennis, H. Liu, J. Zhu, and W. M. Yen, “Trapping processes in CaS:Eu2+,Tm3+,” J. Appl. Phys.88(6), 3402–3407 (2000).
[CrossRef]

J. Electrochem. Soc. (2)

T. Matsuzawa, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

P. F. Smet, N. Avci, and D. Poelman, “Red persistent luminescence in Ca2SiS4:Eu,Nd,” J. Electrochem. Soc.156(4), H243–H248 (2009).
[CrossRef]

J. Lumin. (4)

X.-J. Wang, D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

X. Zhang, J. Zhang, X. Zhang, L. Chen, S. Lu, and X.-J. Wang, “Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3,” J. Lumin.122–123, 958–960 (2007).
[CrossRef]

W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006).
[CrossRef]

J. Mater. Sci. (1)

M. Čeh and D. Kolar, “Solubility of CaO in CaTiO3,” J. Mater. Sci.29(23), 6295–6300 (1994).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

M. F. Zhou, T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, and E. R. Vance, “Defect chemistry and semiconducting properties of calcium titanate,” J. Mater. Sci. Mater. Electron.13(12), 697–704 (2002).
[CrossRef]

J. Phys. Chem. C (2)

X. Zhang, J. Zhang, X. Zhang, M. Wang, H. Zhao, S. Lu, and X. Wang, “Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+ nanoparticles,” J. Phys. Chem. C111(49), 18044–18048 (2007).
[CrossRef]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

J. Soc. Inf. Disp. (1)

S. M. Jacobsen, “Phosphors for full-color low-voltage field-emission displays,” J. Soc. Inf. Disp.4, 331–335 (1996).

J. Solid State Chem. (1)

Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, and M. Wu, “Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor,” J. Solid State Chem.174(1), 69–73 (2003).
[CrossRef]

Mater. Chem. Phys. (1)

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Mater. Lett. (2)

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett.51(1), 14–18 (2001).
[CrossRef]

X.-B. Yu, L.-H. Mao, L.-Z. Zhang-Fan, L.-Z. Yang, and S.-P. Yang, “The synthesis of ZnS:Mn2+ nano-particles by solid-state method at low temperature and their photoluminescence characteristics,” Mater. Lett.58(29), 3661–3664 (2004).
[CrossRef]

Mater. Sci. Eng. (1)

U. Balachandran and N. G. Eror, “Electrical conductivity in calcium titanate with excess CaO,” Mater. Sci. Eng.54(2), 221–228 (1982).
[CrossRef]

Physica B (1)

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (1)

S. S. Chedha, D. W. Smith, A. Vecht, and C. S. Gibbons, “New and improved phosphors for low-voltage applications,” SID Int. Symp. Digest Tech. Papers51, 51–54 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

X-ray diffraction patterns of CaTiO3:Pr samples with different Ca excess treated at (a) 1300 °C, (b) 1400 °C and (c) 1500 °C. The arrow in the last figure indicates the peak corresponding to the RP phase.

Fig. 2
Fig. 2

(a) TEM micrograph of CaTiO3:Pr sample with 3% Ca excess treated at 1400 °C. The line indicates the scan for EDS (Fig. 2(b)). (b) EDS line scan showing the elemental composition of CaTiO3:Pr sample with 3% Ca excess treated at 1400 °C.

Fig. 3
Fig. 3

Excitation and emission spectra of CaTiO3:Pr samples with different Ca excess and treated different temperatures.

Fig. 4
Fig. 4

Persistent luminescence decay of CaTiO3:Pr stoichiometric samples treated at different temperatures.

Fig. 5
Fig. 5

Persistent luminescence decay of CaTiO3:Pr samples with different Ca excess treated at 1400 °C.

Fig. 6
Fig. 6

Persistent luminescence decay of CaTiO3:Pr samples with different Ca excess treated at 1500 °C.

Tables (1)

Tables Icon

Table 1 Time Required by Samples to Achieve Limit of Light Perception of the Dark-Adapted Human Eye

Metrics