Abstract

We present measurements and modeling of the effect of P2O5 doping on the strain sensitivity coefficients of silica fibers. In particular, the Brillouin gain spectrum of a heavily P2O5-doped fiber is measured and investigated at different strains. We provide measurements of the strain-optic coefficient (SOC) and the strain-acoustic coefficient (SAC), obtained to be + 0.139 and + 9854m/sec/ε, respectively, both of which are less than the pure silica values. The Pockels’ coefficients p11 and p12 for bulk P2O5 are also estimated via Brillouin gain measurements. Using the strain coefficients, the modeled and unique slopes of the Stokes’-shift-versus-strain curves for the four observed acoustic modes in the fiber each lie within 2% of the measured values.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express17(18), 15685–15699 (2009).
    [CrossRef] [PubMed]
  2. P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011).
    [CrossRef]
  3. H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001).
    [CrossRef]
  4. P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express1(4), 686–699 (2011).
    [CrossRef]
  5. P. D. Dragic, “Simplified model for the effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009).
    [CrossRef]
  6. N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett.13(7), 595–597 (1988).
    [CrossRef] [PubMed]
  7. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
    [CrossRef]
  8. P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite-element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
    [CrossRef]
  9. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004).
    [CrossRef]
  10. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt.17(18), 2867–2869 (1978).
    [CrossRef] [PubMed]
  11. V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
    [CrossRef]
  12. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988).
    [CrossRef]
  13. A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE1798, 280–285 (1993).
    [CrossRef]
  14. S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
    [CrossRef]
  15. P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009).
    [CrossRef]
  16. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  17. C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett.14(16), 880–882 (1989).
    [CrossRef] [PubMed]
  18. G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995), Chapter 9.
  20. A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989).
    [CrossRef]
  21. M. Guignard, L. Albrecht, and J. W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater.19(2), 286–290 (2007).
    [CrossRef]
  22. A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
    [CrossRef]
  23. K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984).
    [CrossRef]

2011 (4)

P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express1(4), 686–699 (2011).
[CrossRef]

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

2010 (1)

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite-element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
[CrossRef]

2009 (3)

2008 (1)

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

2007 (1)

M. Guignard, L. Albrecht, and J. W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater.19(2), 286–290 (2007).
[CrossRef]

2004 (1)

2001 (1)

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001).
[CrossRef]

1993 (2)

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE1798, 280–285 (1993).
[CrossRef]

1989 (2)

A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989).
[CrossRef]

C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett.14(16), 880–882 (1989).
[CrossRef] [PubMed]

1988 (2)

1984 (1)

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984).
[CrossRef]

1980 (1)

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

1978 (1)

1972 (1)

Abe, K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Akola, J.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Albrecht, L.

M. Guignard, L. Albrecht, and J. W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater.19(2), 286–290 (2007).
[CrossRef]

Anan’ev, A. V.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Azuma, Y.

Bertholds, A.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988).
[CrossRef]

Bogdanov, V. N.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Bonnell, L.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Brazhkin, V. V.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Bridge, B.

A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989).
[CrossRef]

Butter, C. D.

Champagnon, B.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Chen, X.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Cheng, J.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Chujo, W.

Croteau, A.

Dandliker, R.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988).
[CrossRef]

Desurvire, E.

Devyatykh, G. G.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Dianov, E. M.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Dragic, P. D.

Ewaida, M. A.

A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989).
[CrossRef]

Ferrari, M.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Friebele, E. J.

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE1798, 280–285 (1993).
[CrossRef]

Gao, L.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Giles, C. R.

Gu, R.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Guignard, M.

M. Guignard, L. Albrecht, and J. W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater.19(2), 286–290 (2007).
[CrossRef]

Higazy, A. A.

A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989).
[CrossRef]

Hocker, G. B.

Horiguchi, T.

Hussein, A.

A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989).
[CrossRef]

Ihara, C.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984).
[CrossRef]

Jen, C.-K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Karapetyan, G. O.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Karpychev, N. S.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Katayama, Y.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Kersey, A. D.

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE1798, 280–285 (1993).
[CrossRef]

Kihara, M.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001).
[CrossRef]

Kohara, S.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Komatsu, T.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984).
[CrossRef]

Kondrin, M. V.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Koyamada, Y.

Kushibiki, J.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Law, P.-C.

Liu, S.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Liu, Y.-S.

Lyapin, A. G.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Lyapin, S. G.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Maksimov, L. V.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Mashinskii, V. M.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Matusita, K.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984).
[CrossRef]

Mazavin, S. M.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Nakamura, S.

Naruse, H.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001).
[CrossRef]

Neron, C.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Neustruev, V. B.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Nikolaichik, A. V.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Ohno, H.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001).
[CrossRef]

Prokhorov, A. M.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Ritus, A. I.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Sato, S.

Shang, A.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Shibata, N.

Shimada, A.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001).
[CrossRef]

Simpson, J. R.

Smerdin, S. N.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Smith, R. G.

Sokolov, N. I.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Solovyev, V. A.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

Sotobayashi, H.

Spring, J.

Tateda, M.

Tricot, G.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Ward, B.

Ward, B. G.

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite-element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
[CrossRef]

Weis, R. S.

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE1798, 280–285 (1993).
[CrossRef]

Yagafarov, O. F.

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

Yin, Z.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Yokota, R.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984).
[CrossRef]

Yushin, A. S.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Zhang, L.

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Zwanziger, J. W.

M. Guignard, L. Albrecht, and J. W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater.19(2), 286–290 (2007).
[CrossRef]

Appl. Opt. (2)

Chem. Mater. (1)

M. Guignard, L. Albrecht, and J. W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater.19(2), 286–290 (2007).
[CrossRef]

Electron. Lett. (1)

P. D. Dragic, “Simplified model for the effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite-element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. A. Higazy, B. Bridge, A. Hussein, and M. A. Ewaida, “Elastic constants and structure of the vitreous system ZnO-P2O5,” J. Acoust. Soc. Am.86(4), 1453–1458 (1989).
[CrossRef]

J. Am. Ceram. Soc. (2)

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc.67(10), 700–704 (1984).
[CrossRef]

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

J. Lightwave Technol. (3)

J. Mater. Chem. (1)

V. V. Brazhkin, J. Akola, Y. Katayama, S. Kohara, M. V. Kondrin, A. G. Lyapin, S. G. Lyapin, G. Tricot, and O. F. Yagafarov, “Densified low-hygroscopic form of P2O5 glass,” J. Mater. Chem.21(28), 10442–10447 (2011).
[CrossRef]

J. Non-Cryst. Solids (1)

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids354(26), 3049–3058 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng.50(5), 054401 (2011).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol.7(1), 45–64 (2001).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (1)

A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE1798, 280–285 (1993).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron.10(7), 900–902 (1980).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995), Chapter 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental apparatus that is used to measure the SOC. The test fiber becomes part of the ring laser and any strain results in a measurable change in the cavity FSR.

Fig. 2
Fig. 2

Experimental setup used to measure the Brillouin gain coefficient.

Fig. 3
Fig. 3

Measured (points) change in FSR as a function of strain for (a) the Z-FiberTM and (b) the P2O5-doped fiber. The dashed line is the least-squares fit of Eq. (8) to the data.

Fig. 4
Fig. 4

Data taken from the ESA for the Z-FiberTM for the data points shown in Fig. 3(a). The measurements were made on the 86th harmonic of the FSR (cavity mode) beat signal.

Fig. 5
Fig. 5

Frequency shift (fundamental mode, L01) vs. strain for the P2O5-doped fiber (red dots), a sample of standard Ge-doped SMF-28TM (blue dots), and pure silica fiber (Z-FiberTM, green dots). All R-squared values for the fits-to-data (dashed lines) are greater than 0.999. The trends are both approximately linear in the available strain range and the Stokes’ frequency shifts are highly sensitive to the tensile strain.

Fig. 6
Fig. 6

The modeled frequency shift (solid line) and the measured frequency shift (circle) vs. strain (ε). All the trends are approximately linear in the available measurement range. The modeled data of each of the modes are very close to the measured points. The fundamental mode has the lowest frequency.

Fig. 7
Fig. 7

Measured and fitted SBS power vs. input pump power for a 54 m segment of the P2O5 fiber.

Fig. 8
Fig. 8

BGS of short (blue) and long (red) segments of P2O5-doped fiber (measured at 1534 nm).

Tables (6)

Tables Icon

Table 1 Measured Parameters at 1534 nm Optical Wavelength for the Observed Acoustic Modes m

Tables Icon

Table 2 The Modeled Parameters and Calculated Results of SiO2 and P2O5

Tables Icon

Table 3 Selected Specifications and Measurement Results

Tables Icon

Table 4 Refractive Index of the Layers of the Step-wise Approximation to the RIP of the P2O5-doped Fiber

Tables Icon

Table 5 The Comparison of Measured and Modeled Linear Equations of the Strain-dependent Frequency Shift

Tables Icon

Table 6 Parameters Utilized to Calculate p12

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d ν B (ε) dε = 2 λ 0 [ n d V A dε + V A dn dε ].
Q= dn dε = 1 2 n 0 3 [ p 12 σ( p 11 + p 12 ) ],
Δ ν FSR =FSR= c nl
FSR= c nl+NL .
dFSR dε = c ( nl+NL ) 2 ( n dl dε +l dn dε ).
ΔFSR= c ( nl+NL ) 2 ( nΔl+lΔn ),
ΔFSR= c ( nl+NL ) 2 ( n l 0 +lQ )ε.
Δ ν ESA M =MΔFSR=M c ( nl+NL ) 2 ( n l 0 +lQ )ε.
V A P 2 O 5 ( T )= R p ε+3936.00m/s,
V A Si O 2 ( ε )= R S ε+5971.33m/s
ν B Si O 2 ( ε( % ) )=524.66 MHz /% ε(%)+11.213GHz
g B ( ν B )= 2π n 7 p 12 2 c λ o 2 ρ V A Δ ν B Γ
P s ( z=0 )= P s,in eff exp( g B P p L eff A eff α o L ),
L eff = 1 α o ( 1exp( α o L ) ),
Γ= [ E * ( r )E( r )u( r )rdr ] 2 ,
Γ= A 01 Δ ν B 01 m=1 N A 0m Δ ν B 0m ,

Metrics