Abstract

In this work, the persistent luminescence mechanisms of Tb3+ (in CdSiO3) and Eu2+ (in BaAl2O4) based on solid experimental data are compared. The photoluminescence spectroscopy shows the different nature of the inter- and intraconfigurational transitions for Eu2+ and Tb3+, respectively. The electron is the charge carrier in both mechanisms, implying the presence of electron acceptor defects. The preliminary structural analysis shows a free space in CdSiO3 able to accommodate interstitial oxide ions needed by charge compensation during the initial preparation. The subsequent annealing removes this oxide leaving behind an electron trap. Despite the low band gap energy for CdSiO3, determined with synchrotron radiation UV-VUV excitation spectroscopy of Tb3+, the persistent luminescence from Tb3+ is observed only with UV irradiation. The need of high excitation energy is due to the position of 7F6 level deep below the bottom of the conduction band, as determined with the 4f8→4f75d1 and the ligand-to-metal charge-transfer transitions. Finally, the persistent luminescence mechanisms are constructed and, despite the differences, the mechanisms for Tb3+ and Eu2+ proved to be rather similar. This similarity confirms the solidity of the interpretation of experimental data for the Eu2+ doped persistent luminescence materials and encourages the use of similar models for other persistent luminescence materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
    [CrossRef] [PubMed]
  2. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  3. Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
    [CrossRef]
  4. Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
    [CrossRef]
  5. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).
  6. J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
    [CrossRef]
  7. T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999).
    [CrossRef]
  8. C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009).
    [CrossRef]
  9. J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
    [CrossRef]
  10. J. Fu, “Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba),” Electrochem. Solid-State Lett.3(7), 350–351 (1999).
    [CrossRef]
  11. T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
    [CrossRef]
  12. X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
    [CrossRef]
  13. Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007).
    [CrossRef]
  14. J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
    [CrossRef]
  15. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
    [CrossRef]
  16. L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
    [CrossRef]
  17. P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
    [CrossRef]
  18. Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
    [CrossRef]
  19. S. Ekambaram, K. C. Patil, and M. Maaza, “Synthesis of lamp phosphors: facile combustion approach,” J. Alloys Compd.393(1-2), 81–92 (2005).
    [CrossRef]
  20. B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009).
    [CrossRef]
  21. HASYLAB, Beamline I: SUPERLUMI, http://hasylab.desy.de/facilities/doris_iii/beamlines/i_superlumi (accessed on Dec. 20, 2011).
  22. Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005).
    [CrossRef]
  23. A. V. S. Lourenço, L. C. V. Rodrigues, C. A. Kodaira, R. Stefani, H. F. Brito, M. C. F. C. Felinto, and J. Hölsä, “Persistent luminescence BaAl2O4:Eu2+,Dy3+ phosphor encapsulated in silica: water resistance,” in Proc. Int. Conf. Adv. Mater. (Braz. Mater. Res. Soc.), Rio de Janeiro-RJ, Brazil, September 20–25, 2009, BB556. http://www.sbpmat.org.br/icam2009/pdf/BB556.pdf .
  24. F. A. Kröger and H. J. Vink, in Proc. Intern. Colloq. “Semiconductors and phosphors” (Interscience Publishers, Inc., New York, 1958), p. 17.
  25. M. Weil, “Parawollastonite-type Cd3[Si3O9],” Acta Crystallogr. Sect. E Struct. Rep. Online61(6), i102–i104 (2005).
    [CrossRef]
  26. K. Brandenburg, Diamond v.3.2g, Crystal Impact: Bonn, Germany, 2011.
  27. P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
    [CrossRef] [PubMed]
  28. T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
    [CrossRef]
  29. P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd.488(2), 568–573 (2009).
    [CrossRef]
  30. P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
    [CrossRef]
  31. M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
    [CrossRef]

2012 (1)

2010 (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

2009 (6)

X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
[CrossRef]

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009).
[CrossRef]

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd.488(2), 568–573 (2009).
[CrossRef]

2008 (1)

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

2007 (3)

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
[CrossRef]

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007).
[CrossRef]

2006 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

2005 (3)

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005).
[CrossRef]

M. Weil, “Parawollastonite-type Cd3[Si3O9],” Acta Crystallogr. Sect. E Struct. Rep. Online61(6), i102–i104 (2005).
[CrossRef]

S. Ekambaram, K. C. Patil, and M. Maaza, “Synthesis of lamp phosphors: facile combustion approach,” J. Alloys Compd.393(1-2), 81–92 (2005).
[CrossRef]

2004 (1)

P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
[CrossRef]

2003 (1)

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

2002 (1)

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

2001 (1)

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

1999 (2)

J. Fu, “Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba),” Electrochem. Solid-State Lett.3(7), 350–351 (1999).
[CrossRef]

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999).
[CrossRef]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

1994 (1)

P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
[CrossRef] [PubMed]

1991 (1)

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Aitasalo, T.

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Akamine, H.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Botha, J. R.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009).
[CrossRef]

Brito, H. F.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Cao, L.

X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
[CrossRef]

Carvalho, J. M.

Che, G.

C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009).
[CrossRef]

Cong, Y.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd.488(2), 568–573 (2009).
[CrossRef]

P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
[CrossRef]

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

Ekambaram, S.

S. Ekambaram, K. C. Patil, and M. Maaza, “Synthesis of lamp phosphors: facile combustion approach,” J. Alloys Compd.393(1-2), 81–92 (2005).
[CrossRef]

Felinto, M. C. F. C.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Fu, J.

J. Fu, “Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba),” Electrochem. Solid-State Lett.3(7), 350–351 (1999).
[CrossRef]

Futemma, T.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Ganaha, Y.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Greene, R. L.

P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
[CrossRef] [PubMed]

Gushiken, M.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Hietikko, A.

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

Hiraoka, M.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Hirata, N.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Hölsä, J.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Hong, G.

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

Hosono, H.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999).
[CrossRef]

Hreniak, D.

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

Jorgensen, J. D.

P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
[CrossRef] [PubMed]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Kawazoe, H.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999).
[CrossRef]

Kinjoh, Y.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Kinoshita, T.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999).
[CrossRef]

Kuang, J.

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005).
[CrossRef]

Laamanen, T.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

Lastusaari, M.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Lei, B.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007).
[CrossRef]

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005).
[CrossRef]

Li, B.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007).
[CrossRef]

Li, W.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007).
[CrossRef]

Lin, Y.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Liu, C.

C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009).
[CrossRef]

Liu, W.

X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
[CrossRef]

Liu, Y.

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005).
[CrossRef]

Lu, M.

Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
[CrossRef]

Ma, Q.

Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
[CrossRef]

Maaza, M.

S. Ekambaram, K. C. Patil, and M. Maaza, “Synthesis of lamp phosphors: facile combustion approach,” J. Alloys Compd.393(1-2), 81–92 (2005).
[CrossRef]

Malkamäki, M.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Malta, O. L.

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Miyazato, M.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Miyazato, T.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Mothudi, B. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Nan, C. W.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Niittykoski, J.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Ntwaeaborwa, O. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009).
[CrossRef]

Nunes, L. A. O.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Patil, K. C.

S. Ekambaram, K. C. Patil, and M. Maaza, “Synthesis of lamp phosphors: facile combustion approach,” J. Alloys Compd.393(1-2), 81–92 (2005).
[CrossRef]

Peng, J. L.

P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
[CrossRef] [PubMed]

Peng, M.

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

Poelman, D.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Qiu, Z.

Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
[CrossRef]

Qu, X.

X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
[CrossRef]

Radaelli, P. G.

P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
[CrossRef] [PubMed]

Rodrigues, L. C. V.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express2(3), 331–340 (2012).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Schultz, A. J.

P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
[CrossRef] [PubMed]

Shi, C.

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005).
[CrossRef]

Smet, P. F.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Stefani, R.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

Strek, W.

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

Su, G.

X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
[CrossRef]

Swart, H. C.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Tang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Tomiki, T.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Toyokawa, N.

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

Trojan-Piegza, J.

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

Van den Eeckhout, K.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Wang, P.

X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
[CrossRef]

Wang, Q.

C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009).
[CrossRef]

Wang, X.

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Weil, M.

M. Weil, “Parawollastonite-type Cd3[Si3O9],” Acta Crystallogr. Sect. E Struct. Rep. Online61(6), i102–i104 (2005).
[CrossRef]

Xu, Z.

C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009).
[CrossRef]

Yamazaki, M.

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999).
[CrossRef]

Zhang, A.

Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
[CrossRef]

Zhang, J.

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Zhang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Zhou, Y.

Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
[CrossRef]

Zych, E.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

Acta Crystallogr. Sect. E Struct. Rep. Online (1)

M. Weil, “Parawollastonite-type Cd3[Si3O9],” Acta Crystallogr. Sect. E Struct. Rep. Online61(6), i102–i104 (2005).
[CrossRef]

Acta Mater. (1)

Z. Qiu, Y. Zhou, M. Lu, A. Zhang, and Q. Ma, “Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research,” Acta Mater.55(8), 2615–2620 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Lin, Z. Tang, Z. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu,Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002).
[CrossRef]

Electrochem. Solid-State Lett. (1)

J. Fu, “Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba),” Electrochem. Solid-State Lett.3(7), 350–351 (1999).
[CrossRef]

J. Alloys Compd. (5)

T. Aitasalo, A. Hietikko, D. Hreniak, J. Hölsä, M. Lastusaari, J. Niittykoski, and W. Stręk, “Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+,” J. Alloys Compd.451(1-2), 229–231 (2008).
[CrossRef]

X. Qu, L. Cao, W. Liu, G. Su, and P. Wang, “Luminescence properties of CdSiO3: Mn2+,RE3+ (RE = Sm, Dy, Eu) phosphors,” J. Alloys Compd.487(1-2), 387–390 (2009).
[CrossRef]

C. Liu, G. Che, Z. Xu, and Q. Wang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor,” J. Alloys Compd.474(1-2), 250–253 (2009).
[CrossRef]

S. Ekambaram, K. C. Patil, and M. Maaza, “Synthesis of lamp phosphors: facile combustion approach,” J. Alloys Compd.393(1-2), 81–92 (2005).
[CrossRef]

P. Dorenbos, “Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena,” J. Alloys Compd.488(2), 568–573 (2009).
[CrossRef]

J. Appl. Phys. (1)

T. Kinoshita, M. Yamazaki, H. Kawazoe, and H. Hosono, “Long lasting phosphorescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses,” J. Appl. Phys.86(7), 3729–3733 (1999).
[CrossRef]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

J. Lumin. (3)

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin.126(2), 822–826 (2007).
[CrossRef]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu,” J. Lumin.127(2), 735–740 (2007).
[CrossRef]

P. Dorenbos, “Locating lanthanide impurity levels in the forbidden band of host crystals,” J. Lumin.108(1-4), 301–305 (2004).
[CrossRef]

J. Mater. Chem. (1)

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem.15(37), 4025–4031 (2005).
[CrossRef]

J. Mater. Sci. Lett. (1)

Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

J. Phys. Chem. B (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+,” J. Phys. Chem. C (to be published).

J. Trojan-Piegza, E. Zych, J. Hölsä, and J. Niittykoski, “Spectroscopic properties of persistent luminescence phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba),” J. Phys. Chem. C113(47), 20493–20498 (2009).
[CrossRef]

J. Phys. Condens. Matter (1)

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

J. Phys. Soc. Jpn. (1)

T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn.60(7), 2437–2445 (1991).
[CrossRef]

J. Solid State Chem. (1)

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem.183(10), 2365–2371 (2010).
[CrossRef]

Materials (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Opt. Mater. (1)

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and E. Zych, “Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+,” Opt. Mater.31(12), 1791–1793 (2009).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, “Evidence of apical oxygen in Nd2CuOy determined by single-crystal neutron diffraction,” Phys. Rev. B Condens. Matter49(21), 15322–15326 (1994).
[CrossRef] [PubMed]

Physica B (1)

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+,Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C,” Physica B404(22), 4440–4444 (2009).
[CrossRef]

Other (4)

HASYLAB, Beamline I: SUPERLUMI, http://hasylab.desy.de/facilities/doris_iii/beamlines/i_superlumi (accessed on Dec. 20, 2011).

A. V. S. Lourenço, L. C. V. Rodrigues, C. A. Kodaira, R. Stefani, H. F. Brito, M. C. F. C. Felinto, and J. Hölsä, “Persistent luminescence BaAl2O4:Eu2+,Dy3+ phosphor encapsulated in silica: water resistance,” in Proc. Int. Conf. Adv. Mater. (Braz. Mater. Res. Soc.), Rio de Janeiro-RJ, Brazil, September 20–25, 2009, BB556. http://www.sbpmat.org.br/icam2009/pdf/BB556.pdf .

F. A. Kröger and H. J. Vink, in Proc. Intern. Colloq. “Semiconductors and phosphors” (Interscience Publishers, Inc., New York, 1958), p. 17.

K. Brandenburg, Diamond v.3.2g, Crystal Impact: Bonn, Germany, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

UV excited and persistent luminescence spectra of CdSiO3:Tb3+ (left) and BaAl2O4:Eu2+,Dy3+ (right).

Fig. 2
Fig. 2

A DIAMOND [26] view of the crystal structure of CdSiO3 drawn with data from [25].

Fig. 3
Fig. 3

The SR UV-VUV excitation spectra of CdSiO3:Tb3+ and BaAl2O4:Eu2+,Dy3+ at 10 K.

Fig. 4
Fig. 4

The SR UV-VUV excitation spectra of CdSiO3:Eu3+ (left) and time resolved UV excitation spectrum of BaAl2O4:Eu2+,Dy3+ (right).

Fig. 5
Fig. 5

Persistent luminescence mechanisms of Tb3+ in CdSiO3 (left) and Eu2+ in BaAl2O4 (right). Please note the different energy scales. The trap depth values were obtained from thermoluminescence measurements [5,16].

Metrics