Abstract

Non-doped as well as titanium and lutetium doped zirconia (ZrO2) materials were synthesized via the sol-gel method and structurally characterized with X-ray powder diffraction. The addition of Ti in the zirconia lattice does not change the crystalline structure whilst the Lu doping introduces a small fraction of the tetragonal phase. The UV excitation results in a bright white-blue luminescence at ca. 500 nm for all the materials which emission could be assigned to the Ti3+ egt2g transition. The persistent luminescence originates from the same Ti3+ center. The thermoluminescence data shows a well-defined though rather similar defect structures for all the zirconia materials. The kinetics of persistent luminescence was probed with the isothermal decay curve analyses which indicated significant retrapping. The short duration of persistent luminescence was attributed to the quasi-continuum distribution of the traps and to the possibility of shallow traps even below the room temperature.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
    [CrossRef]
  2. C. G. Granqvist and V. Wittwer, “Materials for solar energy conversion: An overview,” Sol. Energy Mater. Sol. Cells 54(1-4), 39–48 (1998).
    [CrossRef]
  3. P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni, “High-temperature mechanical properties of mullite under compression,” J. Am. Ceram. Soc. 60(3-4), 150–155 (1977).
    [CrossRef]
  4. T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78(3), 368–370 (2001).
    [CrossRef]
  5. L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
    [CrossRef]
  6. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
    [CrossRef]
  7. T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
    [CrossRef]
  8. P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
    [CrossRef]
  9. J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007).
    [CrossRef]
  10. F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
    [CrossRef]
  11. M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
    [CrossRef]
  12. N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin. 87-89, 1076–1078 (2000).
    [CrossRef]
  13. R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramics steel,” Nature 258(5537), 703–704 (1975).
    [CrossRef]
  14. P. K. Wright and A. G. Evans, “Mechanisms governing the performance of thermal barrier coatings,” Curr. Opin. Solid State Mater. Sci. 4(3), 255–265 (1999).
    [CrossRef]
  15. W. C. Li, M. M. McKerns, and B. Fultz, “A Raman spectrometry study of phonon anharmonicity of zirconia at elevated temperatures,” J. Am. Ceram. Soc. 94(1), 224–229 (2011).
    [CrossRef]
  16. F. Gallino, C. Di Valentin, and G. Pacchioni, “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys. 13(39), 17667–17675 (2011).
    [CrossRef] [PubMed]
  17. S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003).
    [CrossRef]
  18. S. Shukla and S. Seal, “Thermodynamic tetragonal phase stability in sol-gel derived nanodomains of pure zirconia,” J. Phys. Chem. B 108(11), 3395–3399 (2004).
    [CrossRef]
  19. A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
    [CrossRef]
  20. J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
    [CrossRef]
  21. G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
    [CrossRef]
  22. Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007).
    [CrossRef]
  23. L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
    [CrossRef]
  24. C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. B 44(2), 116–120 (1988).
    [CrossRef]
  25. JCPDS, ICDD, 1997, entries 36–0460 (monoclinic ZrO2) and 42–1164 (tetragonal ZrO2).
  26. L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
    [CrossRef] [PubMed]
  27. R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993).
    [CrossRef]
  28. L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
    [CrossRef]
  29. L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
    [CrossRef] [PubMed]
  30. K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
    [CrossRef] [PubMed]
  31. K. S. Chung, TL Glow Curve Analyzer v.1.0.3. (Korea Atomic Energy Research Institute and Gyeongsang National University, Korea, 2008).
  32. P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2,” Phys. Status Solidi A 50(1), 275–283 (1978).
    [CrossRef]
  33. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, England, 1985), Chap. 3.3.
  34. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
    [CrossRef] [PubMed]

2011 (3)

W. C. Li, M. M. McKerns, and B. Fultz, “A Raman spectrometry study of phonon anharmonicity of zirconia at elevated temperatures,” J. Am. Ceram. Soc. 94(1), 224–229 (2011).
[CrossRef]

F. Gallino, C. Di Valentin, and G. Pacchioni, “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys. 13(39), 17667–17675 (2011).
[CrossRef] [PubMed]

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

2010 (2)

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

2009 (1)

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

2008 (2)

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

2007 (3)

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007).
[CrossRef]

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007).
[CrossRef]

2006 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

2005 (1)

K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Shukla and S. Seal, “Thermodynamic tetragonal phase stability in sol-gel derived nanodomains of pure zirconia,” J. Phys. Chem. B 108(11), 3395–3399 (2004).
[CrossRef]

2003 (3)

S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003).
[CrossRef]

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

2001 (2)

T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78(3), 368–370 (2001).
[CrossRef]

A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
[CrossRef]

2000 (1)

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin. 87-89, 1076–1078 (2000).
[CrossRef]

1999 (1)

P. K. Wright and A. G. Evans, “Mechanisms governing the performance of thermal barrier coatings,” Curr. Opin. Solid State Mater. Sci. 4(3), 255–265 (1999).
[CrossRef]

1998 (1)

C. G. Granqvist and V. Wittwer, “Materials for solar energy conversion: An overview,” Sol. Energy Mater. Sol. Cells 54(1-4), 39–48 (1998).
[CrossRef]

1994 (1)

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[CrossRef]

1993 (1)

R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993).
[CrossRef]

1990 (1)

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

1988 (1)

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. B 44(2), 116–120 (1988).
[CrossRef]

1978 (1)

P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2,” Phys. Status Solidi A 50(1), 275–283 (1978).
[CrossRef]

1977 (1)

P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni, “High-temperature mechanical properties of mullite under compression,” J. Am. Ceram. Soc. 60(3-4), 150–155 (1977).
[CrossRef]

1975 (1)

R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramics steel,” Nature 258(5537), 703–704 (1975).
[CrossRef]

1968 (1)

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[CrossRef]

1966 (1)

J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
[CrossRef]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Andrade, L. H. C.

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

Astrath, N. G. C.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

Baesso, M. L.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

Bandyopadhyay, S.

S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003).
[CrossRef]

Bento, A. C.

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

Boulon, G.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

Brito, H. F.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

Bunzli, J.-C. G.

J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007).
[CrossRef]

Caruba, R.

P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2,” Phys. Status Solidi A 50(1), 275–283 (1978).
[CrossRef]

Cavin, B.

R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993).
[CrossRef]

Chang, S. Y.

K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
[CrossRef] [PubMed]

Chauvin, A.-S.

J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007).
[CrossRef]

Choe, H. S.

K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
[CrossRef] [PubMed]

Choi, B. C.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Chung, K. S.

K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
[CrossRef] [PubMed]

Comby, S.

J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007).
[CrossRef]

Cong, Y.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007).
[CrossRef]

Cordoncillo, E.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Davis, B. H.

R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993).
[CrossRef]

de Wild, J.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
[CrossRef]

Deren, P.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Di Valentin, C.

F. Gallino, C. Di Valentin, and G. Pacchioni, “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys. 13(39), 17667–17675 (2011).
[CrossRef] [PubMed]

Dokko, P. C.

P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni, “High-temperature mechanical properties of mullite under compression,” J. Am. Ceram. Soc. 60(3-4), 150–155 (1977).
[CrossRef]

Escribano, P.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Evans, A. G.

P. K. Wright and A. G. Evans, “Mechanisms governing the performance of thermal barrier coatings,” Curr. Opin. Solid State Mater. Sci. 4(3), 255–265 (1999).
[CrossRef]

Felinto, M. C. F. C.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

Foster, A. S.

A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
[CrossRef]

Fultz, B.

W. C. Li, M. M. McKerns, and B. Fultz, “A Raman spectrometry study of phonon anharmonicity of zirconia at elevated temperatures,” J. Am. Ceram. Soc. 94(1), 224–229 (2011).
[CrossRef]

Gallino, F.

F. Gallino, C. Di Valentin, and G. Pacchioni, “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys. 13(39), 17667–17675 (2011).
[CrossRef] [PubMed]

Gandra, F. C. G.

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

Gangadharan, K.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[CrossRef]

Garvie, R. C.

R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramics steel,” Nature 258(5537), 703–704 (1975).
[CrossRef]

Gejo, F. L.

A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist and V. Wittwer, “Materials for solar energy conversion: An overview,” Sol. Energy Mater. Sol. Cells 54(1-4), 39–48 (1998).
[CrossRef]

Guyot, Y.

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

Han, T. P. J.

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

Hannink, R. H.

R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramics steel,” Nature 258(5537), 703–704 (1975).
[CrossRef]

Hench, L. L.

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

Hill, R. J.

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. B 44(2), 116–120 (1988).
[CrossRef]

Hölsä, J.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Howard, C. J.

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. B 44(2), 116–120 (1988).
[CrossRef]

Hubbard, C. R.

R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993).
[CrossRef]

Iacconi, P.

P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2,” Phys. Status Solidi A 50(1), 275–283 (1978).
[CrossRef]

Jang, K.-W.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Jeon, T. S.

T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78(3), 368–370 (2001).
[CrossRef]

Jeong, J. H.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Julián-López, B.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Kashiwagura, N.

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

Kim, J. L.

K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
[CrossRef] [PubMed]

Kodama, N.

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin. 87-89, 1076–1078 (2000).
[CrossRef]

Krupa, J.-C.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Kwong, D. L.

T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78(3), 368–370 (2001).
[CrossRef]

Laamanen, T.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

Lapraz, D.

P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2,” Phys. Status Solidi A 50(1), 275–283 (1978).
[CrossRef]

Lastusaari, M.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Lee, H. S.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Lee, J. I.

K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
[CrossRef] [PubMed]

Legendziewicz, J.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Lei, B.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007).
[CrossRef]

Levine, A. K.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[CrossRef]

Li, B.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007).
[CrossRef]

Li, L.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Li, W.

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007).
[CrossRef]

Li, W. C.

W. C. Li, M. M. McKerns, and B. Fultz, “A Raman spectrometry study of phonon anharmonicity of zirconia at elevated temperatures,” J. Am. Ceram. Soc. 94(1), 224–229 (2011).
[CrossRef]

Lima, S. M.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

Malkamäki, M.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

Mazdiyasni, K. S.

P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni, “High-temperature mechanical properties of mullite under compression,” J. Am. Ceram. Soc. 60(3-4), 150–155 (1977).
[CrossRef]

McKerns, M. M.

W. C. Li, M. M. McKerns, and B. Fultz, “A Raman spectrometry study of phonon anharmonicity of zirconia at elevated temperatures,” J. Am. Ceram. Soc. 94(1), 224–229 (2011).
[CrossRef]

Medina, A. N.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

Meijerink, A.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
[CrossRef]

Mittal, J. P.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[CrossRef]

Moon, B. K.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Nakayama, T.

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

Neto, A. M.

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

Nieminen, R. M.

A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
[CrossRef]

Niittykoski, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Novatski, A.

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

Ohsumi, Y.

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

Pacchioni, G.

F. Gallino, C. Di Valentin, and G. Pacchioni, “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys. 13(39), 17667–17675 (2011).
[CrossRef] [PubMed]

Pal, H.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[CrossRef]

Palilla, F. C.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[CrossRef]

Pascoe, R. T.

R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramics steel,” Nature 258(5537), 703–704 (1975).
[CrossRef]

Pask, J. A.

P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni, “High-temperature mechanical properties of mullite under compression,” J. Am. Ceram. Soc. 60(3-4), 150–155 (1977).
[CrossRef]

Phatak, G. M.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[CrossRef]

Planelles-Aragó, J.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Rath, J. K.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
[CrossRef]

Reichert, B. E.

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. B 44(2), 116–120 (1988).
[CrossRef]

Rodrigues, L. C. V.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

Sanchez, C.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Sarver, J. F.

J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
[CrossRef]

Schropp, R. E. I.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
[CrossRef]

Seal, S.

S. Shukla and S. Seal, “Thermodynamic tetragonal phase stability in sol-gel derived nanodomains of pure zirconia,” J. Phys. Chem. B 108(11), 3395–3399 (2004).
[CrossRef]

S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003).
[CrossRef]

Shluger, A. L.

A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
[CrossRef]

Shukla, S.

S. Shukla and S. Seal, “Thermodynamic tetragonal phase stability in sol-gel derived nanodomains of pure zirconia,” J. Phys. Chem. B 108(11), 3395–3399 (2004).
[CrossRef]

S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003).
[CrossRef]

Song, J. H.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Song, Y.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Srinivasan, R.

R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993).
[CrossRef]

Stefani, R.

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

Strek, W.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

Sulimov, V. B.

A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
[CrossRef]

Tanii, Y.

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin. 87-89, 1076–1078 (2000).
[CrossRef]

Tomkus, M. R.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[CrossRef]

Udo, P. T.

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

van Sark, W. G. J. H. M.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
[CrossRef]

Vandevyver, C. D. B.

J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007).
[CrossRef]

Viana, B.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Vij, R.

S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003).
[CrossRef]

Wang, R. M.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

West, J. K.

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

White, J. M.

T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78(3), 368–370 (2001).
[CrossRef]

Wittwer, V.

C. G. Granqvist and V. Wittwer, “Materials for solar energy conversion: An overview,” Sol. Energy Mater. Sol. Cells 54(1-4), 39–48 (1998).
[CrossRef]

Wright, P. K.

P. K. Wright and A. G. Evans, “Mechanisms governing the performance of thermal barrier coatings,” Curr. Opin. Solid State Mater. Sci. 4(3), 255–265 (1999).
[CrossRef]

Xi, Z. H.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Xing, Y. J.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Xu, J.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Xue, Z. Q.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Yamaga, M.

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin. 87-89, 1076–1078 (2000).
[CrossRef]

Yang, H. K.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Yi, S. S.

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

Yu, D. P.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Zhang, S. L.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Zhang, X. D.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Acta Crystallogr. B (1)

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. B 44(2), 116–120 (1988).
[CrossRef]

Appl. Phys. Lett. (2)

T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78(3), 368–370 (2001).
[CrossRef]

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003).
[CrossRef]

Bull. Mater. Sci. (1)

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[CrossRef]

Chem. Mater. (1)

R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993).
[CrossRef]

Chem. Rev. (1)

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

P. K. Wright and A. G. Evans, “Mechanisms governing the performance of thermal barrier coatings,” Curr. Opin. Solid State Mater. Sci. 4(3), 255–265 (1999).
[CrossRef]

J. Am. Ceram. Soc. (2)

W. C. Li, M. M. McKerns, and B. Fultz, “A Raman spectrometry study of phonon anharmonicity of zirconia at elevated temperatures,” J. Am. Ceram. Soc. 94(1), 224–229 (2011).
[CrossRef]

P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni, “High-temperature mechanical properties of mullite under compression,” J. Am. Ceram. Soc. 60(3-4), 150–155 (1977).
[CrossRef]

J. Electrochem. Soc. (2)

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[CrossRef]

J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
[CrossRef]

J. Lumin. (2)

Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007).
[CrossRef]

N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin. 87-89, 1076–1078 (2000).
[CrossRef]

J. Mater. Chem. (1)

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

S. Shukla and S. Seal, “Thermodynamic tetragonal phase stability in sol-gel derived nanodomains of pure zirconia,” J. Phys. Chem. B 108(11), 3395–3399 (2004).
[CrossRef]

J. Rare Earths (1)

J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007).
[CrossRef]

J. Solid State Chem. (2)

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[CrossRef]

L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010).
[CrossRef]

Nano Lett. (1)

S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003).
[CrossRef]

Nature (1)

R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramics steel,” Nature 258(5537), 703–704 (1975).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

F. Gallino, C. Di Valentin, and G. Pacchioni, “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys. 13(39), 17667–17675 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (2)

A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001).
[CrossRef]

L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2,” Phys. Status Solidi A 50(1), 275–283 (1978).
[CrossRef]

Radiat. Prot. Dosimetry (1)

K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010).
[CrossRef]

C. G. Granqvist and V. Wittwer, “Materials for solar energy conversion: An overview,” Sol. Energy Mater. Sol. Cells 54(1-4), 39–48 (1998).
[CrossRef]

Other (3)

K. S. Chung, TL Glow Curve Analyzer v.1.0.3. (Korea Atomic Energy Research Institute and Gyeongsang National University, Korea, 2008).

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, England, 1985), Chap. 3.3.

JCPDS, ICDD, 1997, entries 36–0460 (monoclinic ZrO2) and 42–1164 (tetragonal ZrO2).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The X-ray power diffraction (XPD) patterns of the non-doped, Ti and Lu doped ZrO2 materials annealed at 1000 °C. Vertical bars indicate the standard JCPDS data [25] for the monoclinic and tetragonal phases.

Fig. 2
Fig. 2

A schematic presentation of the m-ZrO2 structure with two M3+ sites ( M Zr ' ) and an oxygen vacancy ( V O ) created by charge compensation.

Fig. 3
Fig. 3

Normalized UV excited emission (top) and persistent emission (bottom) spectra for the non-doped, Ti and Lu doped ZrO2 nanomaterials. The figure insets show the absolute emission intensities.

Fig. 4
Fig. 4

The thermoluminescence glow curves of the non-doped, as well as Ti and Lu doped ZrO2 nanomaterials.

Fig. 5
Fig. 5

The photoluminescence isothermal decay curves of the non-doped as well as Ti and Lu doped ZrO2 materials.

Fig. 6
Fig. 6

The 2nd order kinetics fits for the isothermal decay curves of the non-doped as well as Ti and Lu doped ZrO2.

Fig. 7
Fig. 7

The persistent luminescence mechanism of the Ti doped ZrO2 nanomaterial.

Tables (1)

Tables Icon

Table 1 The TL Parameters of the Non-Doped, as well as Ti and Lu Doped ZrO2 Nanomaterials

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(I/ I 0 ) (1-b)/b =1+ n 0 b-1 (b-1)s'exp(- E kT )t.
I= I 0 / ( n 0 αt+1) 2 .
α=s'exp( E kT )= τ 1 .

Metrics