Abstract

Persistent luminescent CaAl2O4:Eu2+,Nd3+ powders were prepared by a non-aqueous sol-gel technique. The crystallization of calcium aluminate by heat-treatment of the sols is described in detail. After heat treatment in air, the europium dopant ions are mainly in a trivalent state. For the reduction to the divalent state post-annealing in a reducing nitrogen-hydrogen atmosphere is used. The reduction of europium ions is monitored by photoluminescence and x-ray absorption (XANES) spectroscopy. The degree of reduction is strongly dependent on the annealing temperature. Although for high temperature a strong enhancement of the Eu2+ emission is observed, this also leads to powders with a gray body color.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gaki, T. Perraki, and G. Kakali, “Wet chemical synthesis of monocalcium aluminate,” J. Eur. Ceram. Soc.27(2-3), 1785–1789 (2007).
    [CrossRef]
  2. S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
    [CrossRef]
  3. J. M. R. Mercury, A. H. De Aza, and P. Pena, “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Eur. Ceram. Soc.25(14), 3269–3279 (2005).
    [CrossRef]
  4. B. M. Mohamed and J. H. Sharp, “Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4,” J. Mater. Chem.7(8), 1595–1599 (1997).
    [CrossRef]
  5. V. Singh, V. Natarajan, and D. K. Kim, “Characterisation and luminescence investigations of Mn doped CaAl2O4 phosphor prepared by combustion,” Int. J. Mod. Phys. B22(13), 2095–2099 (2008).
    [CrossRef]
  6. X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102-103, 34–37 (2003).
    [CrossRef]
  7. S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
    [CrossRef]
  8. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Materials3(4), 2536–2566 (2010).
    [CrossRef]
  9. J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
    [CrossRef]
  10. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
    [CrossRef]
  11. A. Douy and M. Gervais, “Crystallization of amorphous precursors in the calcia-alumina system: A differential scanning calorimetry study,” J. Am. Ceram. Soc.83(1), 70–76 (2000).
    [CrossRef]
  12. S. W. Choi and S. H. Hong, “Size and morphology control by planetary ball milling in CaAl2O4:Eu2+ phosphors prepared by Pechini method and their luminescence properties,” Mater. Sci. Eng. B171(1-3), 69–72 (2010).
    [CrossRef]
  13. V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, “Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor,” Opt. Mater.30(3), 446–450 (2007).
    [CrossRef]
  14. C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
    [CrossRef]
  15. W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
    [CrossRef]
  16. T. Katsumata, T. Nabae, K. Sasajima, and T. Matsuzawa, “Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique,” J. Cryst. Growth183(3), 361–365 (1998).
    [CrossRef]
  17. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
    [CrossRef]
  18. M. Murayama, N. Takeuchi, Y. Aoki, and T. Matsuzawa, “Phosphorescent phosphor,” US Patent 5424006 (1995).
  19. J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001).
    [CrossRef]
  20. Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003).
    [CrossRef]
  21. X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011).
    [CrossRef]
  22. D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
    [CrossRef]
  23. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).
  24. C. Ronda, “(Y,Gd)2O3:Eu3+,” in Luminescence From Theory to Applications (Wiley-VCH, Weinheim, 2008).
  25. G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, “Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure,” Phys. Rev. B Condens. Matter38(14), 10174–10177 (1988).
    [CrossRef] [PubMed]
  26. Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
    [CrossRef]
  27. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
    [CrossRef]

2011 (2)

X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011).
[CrossRef]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

2010 (3)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

S. W. Choi and S. H. Hong, “Size and morphology control by planetary ball milling in CaAl2O4:Eu2+ phosphors prepared by Pechini method and their luminescence properties,” Mater. Sci. Eng. B171(1-3), 69–72 (2010).
[CrossRef]

2008 (2)

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

V. Singh, V. Natarajan, and D. K. Kim, “Characterisation and luminescence investigations of Mn doped CaAl2O4 phosphor prepared by combustion,” Int. J. Mod. Phys. B22(13), 2095–2099 (2008).
[CrossRef]

2007 (3)

V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, “Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor,” Opt. Mater.30(3), 446–450 (2007).
[CrossRef]

A. Gaki, T. Perraki, and G. Kakali, “Wet chemical synthesis of monocalcium aluminate,” J. Eur. Ceram. Soc.27(2-3), 1785–1789 (2007).
[CrossRef]

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

2006 (1)

C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
[CrossRef]

2005 (2)

J. M. R. Mercury, A. H. De Aza, and P. Pena, “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Eur. Ceram. Soc.25(14), 3269–3279 (2005).
[CrossRef]

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

2004 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

2003 (2)

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102-103, 34–37 (2003).
[CrossRef]

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003).
[CrossRef]

2002 (2)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
[CrossRef]

2001 (1)

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001).
[CrossRef]

2000 (1)

A. Douy and M. Gervais, “Crystallization of amorphous precursors in the calcia-alumina system: A differential scanning calorimetry study,” J. Am. Ceram. Soc.83(1), 70–76 (2000).
[CrossRef]

1999 (2)

W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
[CrossRef]

D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
[CrossRef]

1998 (1)

T. Katsumata, T. Nabae, K. Sasajima, and T. Matsuzawa, “Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique,” J. Cryst. Growth183(3), 361–365 (1998).
[CrossRef]

1997 (1)

B. M. Mohamed and J. H. Sharp, “Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4,” J. Mater. Chem.7(8), 1595–1599 (1997).
[CrossRef]

1988 (1)

G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, “Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure,” Phys. Rev. B Condens. Matter38(14), 10174–10177 (1988).
[CrossRef] [PubMed]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).

Andrei, C. M.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Bao, S. P.

X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011).
[CrossRef]

Bhide, M. K.

V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, “Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor,” Opt. Mater.30(3), 446–450 (2007).
[CrossRef]

Botterman, J.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Botton, G. A.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Boutinaud, P.

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

Boyer, D.

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

Chang, C. K.

C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
[CrossRef]

Chen, X. Y.

X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011).
[CrossRef]

Choi, S. W.

S. W. Choi and S. H. Hong, “Size and morphology control by planetary ball milling in CaAl2O4:Eu2+ phosphors prepared by Pechini method and their luminescence properties,” Mater. Sci. Eng. B171(1-3), 69–72 (2010).
[CrossRef]

De Aza, A. H.

J. M. R. Mercury, A. H. De Aza, and P. Pena, “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Eur. Ceram. Soc.25(14), 3269–3279 (2005).
[CrossRef]

Douy, A.

A. Douy and M. Gervais, “Crystallization of amorphous precursors in the calcia-alumina system: A differential scanning calorimetry study,” J. Am. Ceram. Soc.83(1), 70–76 (2000).
[CrossRef]

Engqvist, H.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Erdei, S.

D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
[CrossRef]

Filinchuk, Y.

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

Gaki, A.

A. Gaki, T. Perraki, and G. Kakali, “Wet chemical synthesis of monocalcium aluminate,” J. Eur. Ceram. Soc.27(2-3), 1785–1789 (2007).
[CrossRef]

Gervais, M.

A. Douy and M. Gervais, “Crystallization of amorphous precursors in the calcia-alumina system: A differential scanning calorimetry study,” J. Am. Ceram. Soc.83(1), 70–76 (2000).
[CrossRef]

Grins, J.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Hölsä, J.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001).
[CrossRef]

Hong, S. H.

S. W. Choi and S. H. Hong, “Size and morphology control by planetary ball milling in CaAl2O4:Eu2+ phosphors prepared by Pechini method and their luminescence properties,” Mater. Sci. Eng. B171(1-3), 69–72 (2010).
[CrossRef]

Iftekhar, S.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Janáková, S.

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

Jarmar, T.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Ji, P. T.

X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011).
[CrossRef]

Jia, D. D.

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102-103, 34–37 (2003).
[CrossRef]

Jia, W. Y.

W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
[CrossRef]

Jiang, L.

C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
[CrossRef]

Johnson, S. T.

D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
[CrossRef]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001).
[CrossRef]

Kaindl, G.

G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, “Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure,” Phys. Rev. B Condens. Matter38(14), 10174–10177 (1988).
[CrossRef] [PubMed]

Kakali, G.

A. Gaki, T. Perraki, and G. Kakali, “Wet chemical synthesis of monocalcium aluminate,” J. Eur. Ceram. Soc.27(2-3), 1785–1789 (2007).
[CrossRef]

Katsumata, T.

T. Katsumata, T. Nabae, K. Sasajima, and T. Matsuzawa, “Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique,” J. Cryst. Growth183(3), 361–365 (1998).
[CrossRef]

Kim, D. K.

V. Singh, V. Natarajan, and D. K. Kim, “Characterisation and luminescence investigations of Mn doped CaAl2O4 phosphor prepared by combustion,” Int. J. Mod. Phys. B22(13), 2095–2099 (2008).
[CrossRef]

Kolonin, G. R.

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Kupriyanova, T.

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

Laamanen, T.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

Lastusaari, M.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001).
[CrossRef]

Li, Z.

X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011).
[CrossRef]

Lin, Y. H.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003).
[CrossRef]

Liu, H. M.

W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
[CrossRef]

Loof, J.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Lu, L. Z.

W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
[CrossRef]

Malkamaki, M.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

Mao, D. L.

C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
[CrossRef]

Matsuzawa, T.

T. Katsumata, T. Nabae, K. Sasajima, and T. Matsuzawa, “Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique,” J. Cryst. Growth183(3), 361–365 (1998).
[CrossRef]

Mercury, J. M. R.

J. M. R. Mercury, A. H. De Aza, and P. Pena, “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Eur. Ceram. Soc.25(14), 3269–3279 (2005).
[CrossRef]

Mohamed, B. M.

B. M. Mohamed and J. H. Sharp, “Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4,” J. Mater. Chem.7(8), 1595–1599 (1997).
[CrossRef]

Nabae, T.

T. Katsumata, T. Nabae, K. Sasajima, and T. Matsuzawa, “Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique,” J. Cryst. Growth183(3), 361–365 (1998).
[CrossRef]

Nan, C. W.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003).
[CrossRef]

Natarajan, V.

V. Singh, V. Natarajan, and D. K. Kim, “Characterisation and luminescence investigations of Mn doped CaAl2O4 phosphor prepared by combustion,” Int. J. Mod. Phys. B22(13), 2095–2099 (2008).
[CrossRef]

V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, “Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor,” Opt. Mater.30(3), 446–450 (2007).
[CrossRef]

Niittykoski, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001).
[CrossRef]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Parkkinen, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

Pena, P.

J. M. R. Mercury, A. H. De Aza, and P. Pena, “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Eur. Ceram. Soc.25(14), 3269–3279 (2005).
[CrossRef]

Perraki, T.

A. Gaki, T. Perraki, and G. Kakali, “Wet chemical synthesis of monocalcium aluminate,” J. Eur. Ceram. Soc.27(2-3), 1785–1789 (2007).
[CrossRef]

Poelman, D.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Ravichandran, D.

D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
[CrossRef]

Renaudin, G.

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

Roy, R.

D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
[CrossRef]

Salavcova, L.

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

Sampathkumaran, E. V.

G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, “Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure,” Phys. Rev. B Condens. Matter38(14), 10174–10177 (1988).
[CrossRef] [PubMed]

Sasajima, K.

T. Katsumata, T. Nabae, K. Sasajima, and T. Matsuzawa, “Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique,” J. Cryst. Growth183(3), 361–365 (1998).
[CrossRef]

Schmiester, G.

G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, “Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure,” Phys. Rev. B Condens. Matter38(14), 10174–10177 (1988).
[CrossRef] [PubMed]

Sharp, J. H.

B. M. Mohamed and J. H. Sharp, “Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4,” J. Mater. Chem.7(8), 1595–1599 (1997).
[CrossRef]

Shimizu, H.

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

Shironosova, G. P.

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

Singh, V.

V. Singh, V. Natarajan, and D. K. Kim, “Characterisation and luminescence investigations of Mn doped CaAl2O4 phosphor prepared by combustion,” Int. J. Mod. Phys. B22(13), 2095–2099 (2008).
[CrossRef]

V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, “Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor,” Opt. Mater.30(3), 446–450 (2007).
[CrossRef]

Smet, P. F.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Svensson, G.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

Takahashi, Y.

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

Tang, Z. L.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003).
[CrossRef]

Uruga, T.

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

Valtonen, R.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

Van den Eeckhout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Wachter, P.

G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, “Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure,” Phys. Rev. B Condens. Matter38(14), 10174–10177 (1988).
[CrossRef] [PubMed]

Wang, X. J.

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102-103, 34–37 (2003).
[CrossRef]

Welter, E.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

White, W. B.

D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
[CrossRef]

Xu, J.

C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
[CrossRef]

Yen, W. M.

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102-103, 34–37 (2003).
[CrossRef]

W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
[CrossRef]

Ying, W. J.

C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
[CrossRef]

Yuan, H. B.

W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
[CrossRef]

Zajac, D. A.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

Zhang, Z. T.

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003).
[CrossRef]

Zhu, J. J.

V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, “Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor,” Opt. Mater.30(3), 446–450 (2007).
[CrossRef]

Displays (1)

D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, and W. B. White, “Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors,” Displays19(4), 197–203 (1999).
[CrossRef]

Int. J. Mod. Phys. B (1)

V. Singh, V. Natarajan, and D. K. Kim, “Characterisation and luminescence investigations of Mn doped CaAl2O4 phosphor prepared by combustion,” Int. J. Mod. Phys. B22(13), 2095–2099 (2008).
[CrossRef]

J. Alloy. Comp. (2)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Sol-gel processed Eu2+-doped alkaline earth aluminates,” J. Alloy. Comp.341(1-2), 76–78 (2002).
[CrossRef]

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloy. Comp.323-324, 326–330 (2001).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Douy and M. Gervais, “Crystallization of amorphous precursors in the calcia-alumina system: A differential scanning calorimetry study,” J. Am. Ceram. Soc.83(1), 70–76 (2000).
[CrossRef]

J. Cryst. Growth (2)

W. Y. Jia, H. B. Yuan, L. Z. Lu, H. M. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth200(1-2), 179–184 (1999).
[CrossRef]

T. Katsumata, T. Nabae, K. Sasajima, and T. Matsuzawa, “Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique,” J. Cryst. Growth183(3), 361–365 (1998).
[CrossRef]

J. Eur. Ceram. Soc. (4)

A. Gaki, T. Perraki, and G. Kakali, “Wet chemical synthesis of monocalcium aluminate,” J. Eur. Ceram. Soc.27(2-3), 1785–1789 (2007).
[CrossRef]

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc.28(4), 747–756 (2008).
[CrossRef]

J. M. R. Mercury, A. H. De Aza, and P. Pena, “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Eur. Ceram. Soc.25(14), 3269–3279 (2005).
[CrossRef]

Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc.23(1), 175–178 (2003).
[CrossRef]

J. Lumin. (1)

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102-103, 34–37 (2003).
[CrossRef]

J. Mater. Chem. (1)

B. M. Mohamed and J. H. Sharp, “Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4,” J. Mater. Chem.7(8), 1595–1599 (1997).
[CrossRef]

J. Phys. Chem. Solids (1)

S. Janáková, L. Salavcova, G. Renaudin, Y. Filinchuk, D. Boyer, and P. Boutinaud, “Preparation and structural investigations of sol-gel derived Eu3+-doped CaAl2O4,” J. Phys. Chem. Solids68(5-6), 1147–1151 (2007).
[CrossRef]

Mater. Chem. Phys. (1)

C. K. Chang, J. Xu, L. Jiang, D. L. Mao, and W. J. Ying, “Luminescence of long-lasting CaAl2O4: Eu2+,Nd3+ phosphor by co-precipitation method,” Mater. Chem. Phys.98(2-3), 509–513 (2006).
[CrossRef]

Mater. Sci. (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci.20, 15–20 (2002).

Mater. Sci. Eng. B (1)

S. W. Choi and S. H. Hong, “Size and morphology control by planetary ball milling in CaAl2O4:Eu2+ phosphors prepared by Pechini method and their luminescence properties,” Mater. Sci. Eng. B171(1-3), 69–72 (2010).
[CrossRef]

Materials (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+-Doped Compounds: A Review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Mineral. Mag. (1)

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, T. Kupriyanova, T. Uruga, and H. Shimizu, “Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits,” Mineral. Mag.69(2), 179–190 (2005).
[CrossRef]

Opt. Mater. (3)

X. Y. Chen, Z. Li, S. P. Bao, and P. T. Ji, “Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effect of solvents,” Opt. Mater.34(1), 48–55 (2011).
[CrossRef]

V. Singh, J. J. Zhu, M. K. Bhide, and V. Natarajan, “Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor,” Opt. Mater.30(3), 446–450 (2007).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, and R. Valtonen, “Eu2+ doped calcium aluminates prepared by alternative low temperature routes,” Opt. Mater.26(2), 113–116 (2004).
[CrossRef]

Phys. Rev. B (1)

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, “Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure,” Phys. Rev. B Condens. Matter38(14), 10174–10177 (1988).
[CrossRef] [PubMed]

Spectrochim. Acta, B At. Spectrosc. (1)

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, E. Welter, and D. A. Zajac, “Valence and environment of rare earth ions in CaAl2O4:Eu2+,R3+ persistent luminescence materials,” Spectrochim. Acta, B At. Spectrosc.65(4), 301–305 (2010).
[CrossRef]

Other (2)

M. Murayama, N. Takeuchi, Y. Aoki, and T. Matsuzawa, “Phosphorescent phosphor,” US Patent 5424006 (1995).

C. Ronda, “(Y,Gd)2O3:Eu3+,” in Luminescence From Theory to Applications (Wiley-VCH, Weinheim, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD spectra of undoped CaAl2O4 sols heat treated at various temperatures, with part of the spectra enlarged in the figure on the right. The reference spectrum for monoclinic CaAl2O4 is based on data from ICDD file no. 70-0134. The green triangles represent the peak positions of Ca12Al14O33 (data from ICDD file no. 09-0413) and blue squares indicate the peak positions of CaO(Al2O3)2 (data from ICDD file no. 89-3851). The reference spectrum for the hexagonal phase is based on [7].

Fig. 2
Fig. 2

Normalized PL excitation (blue line) and emission (red line) spectra of CaAl2O4:Eu (1%) heat treated at 1000°C. Excitation spectra for (a) λem = 616nm and (b) λem = 440nm. Emission spectra for (a) λexc = 260nm and (b) λexc = 330nm.

Fig. 3
Fig. 3

PL emission spectra (λexc = 330nm) of CaAl2O4:Eu (1%) heat treated at 900 (blue line), 1000 (red line) and 1100°C (green line).

Fig. 4
Fig. 4

Influence of the temperature during the post-annealing in H2/N2 on the fraction of Eu2+ emission with respect to the total emission intensity upon excitation at 260nm (red squares). The reflectivity of the powder samples is measured at 580nm with respect to the diffuse reflection of the sample without post-annealing (green dots). All data points are plotted against the fraction of Eu2+ as derived from the XANES measurements.

Fig. 5
Fig. 5

XANES spectra for CaAl2O4:Eu heat-treated at 1000°C as a function of the temperature of the post-annealing in H2/N2. The inset shows the XANES spectra for the reference compounds EuS and Eu2O3.

Fig. 6
Fig. 6

Emission intensity monitored at 445nm for CaAl2O4:Eu,Nd powder post-annealed in H2/N2 at 1000°C. The sample was excited at 350nm for 360s. The excitation ended at time t = 0s.

Metrics