Abstract

Billet extrusion is a powerful technique for fabricating soft glass optical fiber preforms. This paper reports progress in the understanding of the relationships between extrusion process parameters and the die geometry. The friction for glass flow within the die is described by a die constant that can be either calculated using die feature dimensions or determined using processing parameters and a glass with known temperature-viscosity behavior. In complex dies in which the glass flows through an array of feed holes the friction can be calculated from the number, length and diameter of the individual channels within the die. The glass flow analysis allows improvement of the extrusion process and guidance of future die design.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
    [CrossRef]
  2. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express10(25), 1520–1525 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1520 .
    [PubMed]
  3. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3568 .
    [CrossRef] [PubMed]
  4. J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
    [CrossRef]
  5. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086 .
    [CrossRef] [PubMed]
  6. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5083 .
    [CrossRef] [PubMed]
  7. V. V. Kumar, A. K. George, J. C. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express11(20), 2641–2645 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 .
    [CrossRef] [PubMed]
  8. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
    [CrossRef]
  9. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 .
    [CrossRef] [PubMed]
  10. M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).
  11. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2646 .
    [CrossRef] [PubMed]
  12. A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010).
    [CrossRef]
  13. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-23-2861 .
    [CrossRef] [PubMed]
  14. K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
    [CrossRef]
  15. D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256–257, 232–236 (1999).
    [CrossRef]
  16. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
    [CrossRef]
  17. E. T. Y. Lee, “Development and characterisation of phosphate glasses for athermalisation,” PhD thesis, (University of Southampton, 2004).
  18. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 µm,” Opt. Express17(22), 20249–20255 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-22-20249 .
    [CrossRef] [PubMed]
  19. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
    [CrossRef]
  20. H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the Fabrication of the Next-Generation Soft Glass Microstructured Optical Fibers,” 1st Int. Workshop on Speciality Optical Fibers, Sao Pedro, Brazil, Aug 2008.
  21. K. J. Rowland and H. Ebendorff-Heidepriem, S. Afshar V., and T. M. Monro, “Antiresonance guiding in soft-glass hollow-core microstructured fibres; fabrication and spectra properties,” Australian Conference on Optical Fibre Technology (ACOFT‘2009), Adelaide, 29 Nov – 3 Dec 2009, paper 161.
  22. H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol.70(1-3), 145–150 (1997).
    [CrossRef]
  23. W. Egel-Hess and E. Roeder, “Extrusion of glass melts – Influence of wall friction effects on the die swell phenomenon,” Glastech. Ber.62, 279–284 (1989).
  24. E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
    [CrossRef]
  25. G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 1. Flows in the orifice channel with the use of different materials for construction,” Glastech. Ber.57, 182–187 (1984).
  26. G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 2. Deformation processes in between the deformation zone and the take up drum,” Glastech. Ber.57, 208–213 (1984).
  27. M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
    [CrossRef]
  28. http://www.schott.com/advanced_optics/english/our_products/materials/optical_glass.html .
  29. http://www.pgo-online.com/intl/katalog/B270.html .
  30. Personnel communication with Asahi Glass Co.
  31. Schott technical data website.
  32. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev.17(3), 273–283 (1921).
    [CrossRef]
  33. http://www.azom.com/article.aspx?ArticleID=964 .
  34. M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009).
    [CrossRef]

2010

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010).
[CrossRef]

2009

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2646 .
[CrossRef] [PubMed]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 µm,” Opt. Express17(22), 20249–20255 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-22-20249 .
[CrossRef] [PubMed]

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009).
[CrossRef]

2008

2007

2006

2005

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

2004

2003

2002

2000

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

1999

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256–257, 232–236 (1999).
[CrossRef]

1997

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol.70(1-3), 145–150 (1997).
[CrossRef]

1994

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

1989

W. Egel-Hess and E. Roeder, “Extrusion of glass melts – Influence of wall friction effects on the die swell phenomenon,” Glastech. Ber.62, 279–284 (1989).

1984

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 1. Flows in the orifice channel with the use of different materials for construction,” Glastech. Ber.57, 182–187 (1984).

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 2. Deformation processes in between the deformation zone and the take up drum,” Glastech. Ber.57, 208–213 (1984).

1972

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
[CrossRef]

1921

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev.17(3), 273–283 (1921).
[CrossRef]

Asimakis, S.

Baricco, M.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Battezzati, L.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Belwalkar, A.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010).
[CrossRef]

Benson, T. M.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Billi, E.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Bonelli, L.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Braglia, M.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Camerlingo, A.

Chatzimina, M.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009).
[CrossRef]

Cox, G.

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 2. Deformation processes in between the deformation zone and the take up drum,” Glastech. Ber.57, 208–213 (1984).

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 1. Flows in the orifice channel with the use of different materials for construction,” Glastech. Ber.57, 182–187 (1984).

Dai, G.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Dasgupta, S.

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2646 .
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-23-2861 .
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086 .
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5083 .
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3568 .
[CrossRef] [PubMed]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).

Egel-Hess, W.

W. Egel-Hess and E. Roeder, “Extrusion of glass melts – Influence of wall friction effects on the die swell phenomenon,” Glastech. Ber.62, 279–284 (1989).

Feng, X.

Finazzi, V.

Flanagan, J. C.

Foo, T.-C.

Frampton, K.

Frampton, K. E.

Furniss, D.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256–257, 232–236 (1999).
[CrossRef]

George, A. K.

Georgiou, G. C.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009).
[CrossRef]

Hatzikiriakos, S. G.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009).
[CrossRef]

Hemming, A.

Horak, P.

Housiadas, K.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009).
[CrossRef]

Itoh, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Iwakura, M.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Knight, J. C.

Koizumi, F.

Kumar, V. V.

Kumar, V. V. R. K.

Lancaster, D. G.

Leong, J. Y. Y.

Li, Q. Q.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Li, Y.

Lian, Z. G.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Loh, W. H.

Masuda, I.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Mayer, H.-J.

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol.70(1-3), 145–150 (1997).
[CrossRef]

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

Misiolek, W. Z.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010).
[CrossRef]

Miura, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Monro, T.

T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

Monro, T. M.

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2646 .
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-23-2861 .
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086 .
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5083 .
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3568 .
[CrossRef] [PubMed]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).

Moore, R.

Moore, R. C.

Mosso, S.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Oermann, M. R.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).

Omenetto, F. G.

Ottaway, D. J.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).

Parmigiani, F.

Petropoulos, P.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 µm,” Opt. Express17(22), 20249–20255 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-22-20249 .
[CrossRef] [PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 .
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5083 .
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3568 .
[CrossRef] [PubMed]

Poletti, F.

Price, J. H. V.

Price, J. V. H.

Reeves, W. H.

Richardson, D. J.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 µm,” Opt. Express17(22), 20249–20255 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-22-20249 .
[CrossRef] [PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 .
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5083 .
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3568 .
[CrossRef] [PubMed]

Roeder, E.

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol.70(1-3), 145–150 (1997).
[CrossRef]

W. Egel-Hess and E. Roeder, “Extrusion of glass melts – Influence of wall friction effects on the die swell phenomenon,” Glastech. Ber.62, 279–284 (1989).

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 1. Flows in the orifice channel with the use of different materials for construction,” Glastech. Ber.57, 182–187 (1984).

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 2. Deformation processes in between the deformation zone and the take up drum,” Glastech. Ber.57, 208–213 (1984).

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
[CrossRef]

Russell, P.

Russell, P. St. J.

Rutt, H. N.

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

Seddon, A.

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256–257, 232–236 (1999).
[CrossRef]

Seddon, A. B.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

Stiehl, C.

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol.70(1-3), 145–150 (1997).
[CrossRef]

Taylor, A. J.

Toulouse, J.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010).
[CrossRef]

Veitch, P. J.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).

Warren-Smith, S. C.

Washburn, E. W.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev.17(3), 273–283 (1921).
[CrossRef]

White, N. M.

Xiao, H.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010).
[CrossRef]

Yamashita, T.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Zhang, W.

Annu. Rev. Mater. Res.

T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

Electron. Lett.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

Glastech. Ber.

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 1. Flows in the orifice channel with the use of different materials for construction,” Glastech. Ber.57, 182–187 (1984).

G. Cox and E. Roeder, “Power requirements and exit velocities in the extrusion of alkali-lime-silica glass Part 2. Deformation processes in between the deformation zone and the take up drum,” Glastech. Ber.57, 208–213 (1984).

W. Egel-Hess and E. Roeder, “Extrusion of glass melts – Influence of wall friction effects on the die swell phenomenon,” Glastech. Ber.62, 279–284 (1989).

IEEE Photon. Technol. Lett.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured tellurite fibre lasers,” IEEE Photon. Technol. Lett. (to be published).

J. Lightwave Technol.

J. Mater. Process. Technol.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol.210(14), 2016–2022 (2010).
[CrossRef]

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol.70(1-3), 145–150 (1997).
[CrossRef]

J. Non-Cryst. Solids

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
[CrossRef]

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256–257, 232–236 (1999).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

J. Non-Newt. Fluid Mech.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newt. Fluid Mech.159(1-3), 1–9 (2009).
[CrossRef]

Mater. Res. Bull.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Opt. Express

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 µm,” Opt. Express17(22), 20249–20255 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-22-20249 .
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2646 .
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086 .
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5083 .
[CrossRef] [PubMed]

V. V. Kumar, A. K. George, J. C. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express11(20), 2641–2645 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 .
[CrossRef] [PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13651 .
[CrossRef] [PubMed]

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express10(25), 1520–1525 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1520 .
[PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3568 .
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev.17(3), 273–283 (1921).
[CrossRef]

Other

http://www.azom.com/article.aspx?ArticleID=964 .

H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the Fabrication of the Next-Generation Soft Glass Microstructured Optical Fibers,” 1st Int. Workshop on Speciality Optical Fibers, Sao Pedro, Brazil, Aug 2008.

K. J. Rowland and H. Ebendorff-Heidepriem, S. Afshar V., and T. M. Monro, “Antiresonance guiding in soft-glass hollow-core microstructured fibres; fabrication and spectra properties,” Australian Conference on Optical Fibre Technology (ACOFT‘2009), Adelaide, 29 Nov – 3 Dec 2009, paper 161.

http://www.schott.com/advanced_optics/english/our_products/materials/optical_glass.html .

http://www.pgo-online.com/intl/katalog/B270.html .

Personnel communication with Asahi Glass Co.

Schott technical data website.

E. T. Y. Lee, “Development and characterisation of phosphate glasses for athermalisation,” PhD thesis, (University of Southampton, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of extrusion setup and process showing the billet region ‘0’ and the die channel region ‘1’, which are considered in the glass flow analysis.

Fig. 2
Fig. 2

Force profile of a typical extrusion trial that produced an F2 lead-silicate glass rod of 10mm diameter from a 30mm diameter billet using 531 °C die temperature and 0.2 mm/min ram speed.

Fig. 3
Fig. 3

Schematics of die profiles in axial direction (top) and transverse direction (bottom) for dies with a tapered (a) or curved (b) funnel to extrude rods, and for a die (c) with multiple feed holes to extrude a preform with 3 rings of holes.

Fig. 4
Fig. 4

Dependent processing parameters, P or 1/v1, as a function of die channel length, L1, (a, b, c) and diameter, D1, (d, e, f) for F2 and NCS rod extrusion trials using metal or graphite dies. The grey shaded areas designate the region of L1/D1>1.

Fig. 5
Fig. 5

Comparison of extrusion pressure (a) and slip coefficient (b) for metal and graphite dies with a single circular channel used in extrusion trials performed at fixed temperature and speed.

Fig. 6
Fig. 6

Slip coefficient as a function of die channel length for dies with different channel diameter and for the glasses B270, NCS, F2 and SF57.

Fig. 7
Fig. 7

Extrusion pressure normalized to the volume flow rate as a function of glass viscosity for different glasses extruded through stainless steel dies with a single circular channel of 7mm length and 10mm diameter.

Fig. 8
Fig. 8

Geometrical and experimental die constants of the die types listed in Table 3. The geometrical die constant is labeled “geometry” in the figure legend. The experimental die constants were determined using different glasses, whose codes as per Table 1 are listed in the figure legend.

Fig. 9
Fig. 9

Experimental and calculated viscosity data as a function of inverse temperature for extrusion trials using different die geometries (Table 2) and glass types.

Tables (3)

Tables Icon

Table 1 Temperatures, Tx, Corresponding to Viscosities 10x dPa⋅s, and Arrhenius Parameters of the Temperature-Viscosity Curve for Each of the Glass Compositions Considered in this Study

Tables Icon

Table 2 Extrusion Parameters Corresponding to Data Shown in Figs. 4-6: Glass Temperature, T, Glass Viscosity, η, Billet Diameter, D0, Die Channel Diameter, D1, Die Channel Length, L1, Ram Speed, v0, Extrudate Speed, v1, Ram Pressure, P a

Tables Icon

Table 3 Parameters of Dies with Different Preform Geometries: Length, L1, Diameter, D1, Number, N, of the Channels within a Die, and Geometrical and Experimental Die Constants, Kdiea

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

logη=A+B/T,
Q= πΔP R 1 4 8η L 1 ,
P=F/ A 0
Q= A 0 v 0
P= 128 L 1 π D 1 4 η A 0 v 0 .
K die = 128 L 1 π D 1 4
Q= πΔP 8η L 1 ( R 1 3 +4α R 1 ).
P= 128 L 1 π D 1 3 ( D 1 +8α ) η A 0 v 0 ,
K die = 128 L 1 π D 1 3 ( D 1 +8α ) .
Q ,i = π D i 4 P 128 L 1 η .
A 0 v 0 = πP 128 L 1 η Σ D i 4 and
P= 128 L 1 πΣ D i 4 η A 0 v 0 ,
K die = 128 L 1 πΣ D i 4 .
K die = 128 L 1 πΣ( N j D j 4 ) .
K die = 128 L 1 πΣ[ N j D j 3 ( D j +8α)] .
K die = P Qη .
1 v 1 = 32 L 1 D 1 4 η P ,

Metrics