Abstract

The fading of persistent luminescence in Sr2MgSi2O7:Eu2+,R3+ (R: Y, La-Nd, Sm-Lu) was studied combining thermoluminescence (TL) and room temperature (persistent) luminescence measurements to gain more information on the mechanism of persistent luminescence. The TL glow curves showed the main trap signal at ca. 80 °C, corresponding to 0.6 eV as the trap depth, with every R co-dopant. The TL measurements carried out with different irradiation times revealed the general order nature of the TL bands. The results obtained from the deconvolutions of the glow curves allowed the prediction of the fading of persistent luminescence with good accuracy, though only when using the Becquerel decay law.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).
  2. T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
    [CrossRef]
  3. D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009).
    [CrossRef] [PubMed]
  4. H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
    [CrossRef]
  5. J. Hölsä, H. F. Brito, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence of Eu3+,Ti3+ doped Y2O2S: A hole trapping mechanism?” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 71–72 (2011).
  6. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Persistent luminescence mechanism of the CdSiO3:Tb3+ phosphors,” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 69–70 (2011).
  7. J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).
  8. M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).
  9. K. S. Chung, TL Glow Curve Analyzer v. 1.0.3. (Korea Atomic Energy Research Institute and Gyeongsang National University, Korea, 2008).
  10. K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007).
    [CrossRef]
  11. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).
  12. A. J. J. Bos, “High sensitivity thermoluminescence dosimetry,” Nucl. Instrum. Methods Phys. Res. B184(1-2), 3–28 (2001).
    [CrossRef]
  13. C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
    [CrossRef]
  14. E. I. Adirovitch, “La formule de Becquerel et la loi élémentaire du déclin de la luminescence des phosphores cristallins,” J. Phys. Radium17(8-9), 705–707 (1956).
    [CrossRef]

2011

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

2009

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).

D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009).
[CrossRef] [PubMed]

2007

K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007).
[CrossRef]

2001

A. J. J. Bos, “High sensitivity thermoluminescence dosimetry,” Nucl. Instrum. Methods Phys. Res. B184(1-2), 3–28 (2001).
[CrossRef]

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

1997

C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
[CrossRef]

1956

E. I. Adirovitch, “La formule de Becquerel et la loi élémentaire du déclin de la luminescence des phosphores cristallins,” J. Phys. Radium17(8-9), 705–707 (1956).
[CrossRef]

Adirovitch, E. I.

E. I. Adirovitch, “La formule de Becquerel et la loi élémentaire du déclin de la luminescence des phosphores cristallins,” J. Phys. Radium17(8-9), 705–707 (1956).
[CrossRef]

Avci, N.

Ayta, W. E. F.

C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
[CrossRef]

Bettinelli, M.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Bos, A. J. J.

A. J. J. Bos, “High sensitivity thermoluminescence dosimetry,” Nucl. Instrum. Methods Phys. Res. B184(1-2), 3–28 (2001).
[CrossRef]

Brito, H. F.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Carlson, S.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Carvalho, J. M.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

Choe, H. S.

K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007).
[CrossRef]

Chung, K. S.

K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007).
[CrossRef]

Eskola, K. O.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Felinto, M. C. F. C.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

Hassinen, J.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

Hölsä, J.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Jungner, H.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Kim, J. L.

K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007).
[CrossRef]

Kotlov, A.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Kulkarni, R. N.

C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
[CrossRef]

Laamanen, T.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

Lastusaari, M.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Lee, J. I.

K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007).
[CrossRef]

Lin, T.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Malkamäki, M.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Malta, O. L.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

Niittykoski, J.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

Novák, P.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

Nunes, L. A. O.

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

Piters, T. M.

C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
[CrossRef]

Poelman, D.

Rodrigues, L. C. V.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

Smet, P. F.

Sunta, C. M.

C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
[CrossRef]

Tang, Z.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Wang, X.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Watanabe, S.

C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
[CrossRef]

Welter, E.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

Zhang, J.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Zhang, Z.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

Electrochem. Soc. Interface

J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).

Eur. J. Mineral.

M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).

J. Mater. Sci. Lett.

T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001).
[CrossRef]

J. Phys. D Appl. Phys.

C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997).
[CrossRef]

J. Phys. Radium

E. I. Adirovitch, “La formule de Becquerel et la loi élémentaire du déclin de la luminescence des phosphores cristallins,” J. Phys. Radium17(8-9), 705–707 (1956).
[CrossRef]

J. Therm. Anal. Calorim.

H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

A. J. J. Bos, “High sensitivity thermoluminescence dosimetry,” Nucl. Instrum. Methods Phys. Res. B184(1-2), 3–28 (2001).
[CrossRef]

Opt. Express

Opt. Mater. Express

J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).

Radiat. Meas.

K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007).
[CrossRef]

Other

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).

K. S. Chung, TL Glow Curve Analyzer v. 1.0.3. (Korea Atomic Energy Research Institute and Gyeongsang National University, Korea, 2008).

J. Hölsä, H. F. Brito, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence of Eu3+,Ti3+ doped Y2O2S: A hole trapping mechanism?” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 71–72 (2011).

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Persistent luminescence mechanism of the CdSiO3:Tb3+ phosphors,” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 69–70 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

TL glow curves of selected Sr2MgSi2O7:Eu2+,R3+ materials. Note that the signal for R: Dy has been multiplied by 0.2. Inset: effect of irradiation time on the glow curve of Sr2MgSi2O7:Eu2+,Dy3+.

Fig. 2
Fig. 2

Persistent luminescence fading of the Sr2MgSi2O7:Eu2+,R3+ materials (R: Dy and Tm) as evidenced by the TL glow curves.

Fig. 3
Fig. 3

Effect of persistent luminescence fading on the n0 and s” parameter values of the general order kinetic model for Sr2MgSi2O7:Eu2+,Dy3+. Inset: Persistent luminescence fading for the same material. Note that all but the time axes are presented in a logarithmic scale.

Fig. 4
Fig. 4

Comparison of the observed and calculated persistent luminescence fading for Sr2MgSi2O7:Eu2+,Dy3+ with two different irradiation times. General and second order as well as Becquerel decay were used for the calculated curves.

Tables (2)

Tables Icon

Table 1 Results for General Order Fits for Sr2MgSi2O7:Eu2+,Dy3+ (Et: 0.60 eV)

Tables Icon

Table 2 Results for Second Order Fits for Sr2MgSi2O7:Eu2+,Dy3+

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I( t ) =  n 0 b p /  [ + (  1 )p n 0 b1 t ] b/(b1)
I( t ) =  I 0 / ( 1+ p n 0 t ) 2
I( t ) =  I 0 /( 1+ p n 0 t )

Metrics