Abstract

Optofluidic sensor for water solutions has been fabricated using a transfer adhesive film and simple all-room-temperature procedures. Performance of a Fabry-Perot (FP) cavity subjected to the high water throughput of ∼ 2 ml per 1 min (at a 0.8 m/s flow velocity) was spectrally characterized. The 25-μm-wide cavity can be repeatedly subjected to pressures causing up to a 1.5% its width’s increase upon pressure cycling. Potential of the new optofluidic platform for applications where (i) large water volumes should be filtered as well as (ii) for measurements of turbulence onset in two-dimensional flows at high 1 m/s velocity are discussed. We show possibility to use FP cavity for the pressure sensing at sensitivity of ΔλP ≃ 0.075 nm/Pa and for the refractive index sensing at Δλn ≃ 390 nm per the refractive index unit.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
    [CrossRef]
  2. J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
    [CrossRef] [PubMed]
  3. K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82(5), 051407 (2011).
    [CrossRef]
  4. H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci.24, 665–697 (1999).
    [CrossRef]
  5. M. Miwa, S. Juodkazis, and H. Misawa, “Drag of laser trapped micro-particle,” Jpn. J. Appl. Phys.39(4A), 1930–1933 (2000).
    [CrossRef]
  6. E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. Nonlinear Opt. Phys. Mater.18(2), 167–194 (2009).
    [CrossRef]
  7. L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics3, 012002 (2009).
    [CrossRef]
  8. D. Y. C. Chan, R. R. Dagastine, and L. R. White, “Forces between a rigid probe particle and a liquid interface -I. The repulsive case,” J. Colloid Interface Sci.236, 141–154 (2001).
    [CrossRef] [PubMed]
  9. N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
    [CrossRef] [PubMed]
  10. G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159(1), 39–43 (2011).
    [CrossRef]
  11. I. R. Young, S. Zieger, and A. V. Babanin, “Global trends in wind speed and wave height,” Science332(6028), 451–455 (2011).
    [CrossRef] [PubMed]
  12. H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011).
    [CrossRef]
  13. D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005).
    [CrossRef]
  14. Z. Wu, N. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng.14, 604–611 (2004).
    [CrossRef]
  15. S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
    [CrossRef]
  16. H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
    [CrossRef]
  17. J. Wu, D. Day, and M. Gu, “Polymeric optofluidic Fabry-Pérot sensor by direct laser machining and hot embossing,” Appl. Opt.50(13), 1843–1849 (2011).
    [CrossRef] [PubMed]
  18. H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005).
    [CrossRef]
  19. W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
    [CrossRef]
  20. S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
    [CrossRef]
  21. P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2005).
  22. Y. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).
  23. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
    [CrossRef] [PubMed]
  24. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
    [CrossRef]

2011

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82(5), 051407 (2011).
[CrossRef]

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159(1), 39–43 (2011).
[CrossRef]

I. R. Young, S. Zieger, and A. V. Babanin, “Global trends in wind speed and wave height,” Science332(6028), 451–455 (2011).
[CrossRef] [PubMed]

H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “Polymeric optofluidic Fabry-Pérot sensor by direct laser machining and hot embossing,” Appl. Opt.50(13), 1843–1849 (2011).
[CrossRef] [PubMed]

2009

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
[CrossRef]

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. Nonlinear Opt. Phys. Mater.18(2), 167–194 (2009).
[CrossRef]

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics3, 012002 (2009).
[CrossRef]

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

2007

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

2006

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

2005

D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005).
[CrossRef]

H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005).
[CrossRef]

2004

Z. Wu, N. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng.14, 604–611 (2004).
[CrossRef]

2001

D. Y. C. Chan, R. R. Dagastine, and L. R. White, “Forces between a rigid probe particle and a liquid interface -I. The repulsive case,” J. Colloid Interface Sci.236, 141–154 (2001).
[CrossRef] [PubMed]

2000

M. Miwa, S. Juodkazis, and H. Misawa, “Drag of laser trapped micro-particle,” Jpn. J. Appl. Phys.39(4A), 1930–1933 (2000).
[CrossRef]

1999

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci.24, 665–697 (1999).
[CrossRef]

W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
[CrossRef]

Ahmad, M.

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

Babanin, A. V.

I. R. Young, S. Zieger, and A. V. Babanin, “Global trends in wind speed and wave height,” Science332(6028), 451–455 (2011).
[CrossRef] [PubMed]

Berger, R.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Brasselet, E.

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. Nonlinear Opt. Phys. Mater.18(2), 167–194 (2009).
[CrossRef]

Brown, S.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Byrne, D.

H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011).
[CrossRef]

Chan, D. Y. C.

D. Y. C. Chan, R. R. Dagastine, and L. R. White, “Forces between a rigid probe particle and a liquid interface -I. The repulsive case,” J. Colloid Interface Sci.236, 141–154 (2001).
[CrossRef] [PubMed]

Chen, W.

W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
[CrossRef]

Chifen, A.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Chu, L.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Conley, C.

D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005).
[CrossRef]

Dagastine, R. R.

D. Y. C. Chan, R. R. Dagastine, and L. R. White, “Forces between a rigid probe particle and a liquid interface -I. The repulsive case,” J. Colloid Interface Sci.236, 141–154 (2001).
[CrossRef] [PubMed]

Day, D.

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159(1), 39–43 (2011).
[CrossRef]

J. Wu, D. Day, and M. Gu, “Polymeric optofluidic Fabry-Pérot sensor by direct laser machining and hot embossing,” Appl. Opt.50(13), 1843–1849 (2011).
[CrossRef] [PubMed]

Easton, C.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Falkovich, G.

H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011).
[CrossRef]

Feld, S.

H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005).
[CrossRef]

Forch, R.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Friend, J. R.

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics3, 012002 (2009).
[CrossRef]

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

Gervinskas, G.

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159(1), 39–43 (2011).
[CrossRef]

Grier, D. G.

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82(5), 051407 (2011).
[CrossRef]

Gu, M.

J. Wu, D. Day, and M. Gu, “Polymeric optofluidic Fabry-Pérot sensor by direct laser machining and hot embossing,” Appl. Opt.50(13), 1843–1849 (2011).
[CrossRef] [PubMed]

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

Hallo, L.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

Huang, X.

S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
[CrossRef]

Z. Wu, N. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng.14, 604–611 (2004).
[CrossRef]

Igarashi, S.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Isha, A.

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

Itakura, A.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Jiao, Z.

S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
[CrossRef]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159(1), 39–43 (2011).
[CrossRef]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. Nonlinear Opt. Phys. Mater.18(2), 167–194 (2009).
[CrossRef]

M. Miwa, S. Juodkazis, and H. Misawa, “Drag of laser trapped micro-particle,” Jpn. J. Appl. Phys.39(4A), 1930–1933 (2000).
[CrossRef]

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci.24, 665–697 (1999).
[CrossRef]

Keddie, J.

W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
[CrossRef]

Kido, H.

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

Kitajima, M.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Kovacs, G.

D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005).
[CrossRef]

Kumar, D.

H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005).
[CrossRef]

Lange, D.

D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005).
[CrossRef]

Lear, K.

H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005).
[CrossRef]

Leech, P. W.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Luther-Davis, B.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

Madou, M.

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

Micic, M.

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

Misawa, H.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

M. Miwa, S. Juodkazis, and H. Misawa, “Drag of laser trapped micro-particle,” Jpn. J. Appl. Phys.39(4A), 1930–1933 (2000).
[CrossRef]

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci.24, 665–697 (1999).
[CrossRef]

Miwa, M.

M. Miwa, S. Juodkazis, and H. Misawa, “Drag of laser trapped micro-particle,” Jpn. J. Appl. Phys.39(4A), 1930–1933 (2000).
[CrossRef]

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Nguyen, N.

S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
[CrossRef]

Z. Wu, N. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng.14, 604–611 (2004).
[CrossRef]

Nicolai, P.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

Norton, J.

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

Oakeshott, J.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Papatheodorou, T.

W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
[CrossRef]

Peat, T. S.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Raizer, Y. P.

Y. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).

Rode, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Sexton, B. A.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Shao, H.

H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005).
[CrossRef]

Shats, M.

H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011).
[CrossRef]

Shull, K.

W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
[CrossRef]

Smith, D.

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

Storment, C.

D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005).
[CrossRef]

Styrkas, D.

W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
[CrossRef]

Suhendra, D.

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

Surjadi, R.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Tabeling, P.

P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2005).

Tikhonchuk, V.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

Toda, M.

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Wang, S.

S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
[CrossRef]

White, L. R.

D. Y. C. Chan, R. R. Dagastine, and L. R. White, “Forces between a rigid probe particle and a liquid interface -I. The repulsive case,” J. Colloid Interface Sci.236, 141–154 (2001).
[CrossRef] [PubMed]

Wu, J.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “Polymeric optofluidic Fabry-Pérot sensor by direct laser machining and hot embossing,” Appl. Opt.50(13), 1843–1849 (2011).
[CrossRef] [PubMed]

Wu, N.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Wu, Z.

Z. Wu, N. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng.14, 604–611 (2004).
[CrossRef]

Xia, H.

H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011).
[CrossRef]

Xiao, K.

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82(5), 051407 (2011).
[CrossRef]

Yang, C.

S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
[CrossRef]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Yeo, L. Y.

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics3, 012002 (2009).
[CrossRef]

Young, I. R.

I. R. Young, S. Zieger, and A. V. Babanin, “Global trends in wind speed and wave height,” Science332(6028), 451–455 (2011).
[CrossRef] [PubMed]

Yunus, W.

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

Yusof, N.

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

Zainal, Z.

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

Zel’dovich, Y.

Y. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).

Zhu, Y.

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Zieger, S.

I. R. Young, S. Zieger, and A. V. Babanin, “Global trends in wind speed and wave height,” Science332(6028), 451–455 (2011).
[CrossRef] [PubMed]

Zoval, J.

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

Appl. Opt.

Biomicrofluidics

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics3, 012002 (2009).
[CrossRef]

Colloids Surf. B

H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, “A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization,” Colloids Surf. B58(1), 44–51 (2007).
[CrossRef]

J. Biomed. Opt.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

D. Y. C. Chan, R. R. Dagastine, and L. R. White, “Forces between a rigid probe particle and a liquid interface -I. The repulsive case,” J. Colloid Interface Sci.236, 141–154 (2001).
[CrossRef] [PubMed]

J. Microelectromech. Syst.

H. Shao, D. Kumar, S. Feld, and K. Lear, “Fabrication of a Fabry–Pérot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates,” J. Microelectromech. Syst.14(4), 756–762 (2005).
[CrossRef]

J. Micromech. Microeng.

Z. Wu, N. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng.14, 604–611 (2004).
[CrossRef]

J. Non.-Cryst. Solids

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non.-Cryst. Solids355(18–21), 1160–1162 (2009).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. Nonlinear Opt. Phys. Mater.18(2), 167–194 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

M. Miwa, S. Juodkazis, and H. Misawa, “Drag of laser trapped micro-particle,” Jpn. J. Appl. Phys.39(4A), 1930–1933 (2000).
[CrossRef]

Lab Chip

N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T. S. Peat, R. Surjadi, C. Easton, P. W. Leech, and B. A. Sexton, “A pmma microfluidic droplet platform for in vitroprotein expression using crude E. coli S30 extract,” Lab Chip9, 3391–3398 (2009).
[CrossRef] [PubMed]

Macromolecules

W. Chen, K. Shull, T. Papatheodorou, D. Styrkas, and J. Keddie, “Equilibrium swelling of hydrophilic polyacrylates in humid environments,” Macromolecules32(1), 136–144 (1999).
[CrossRef]

Microfluid. Nanofluid.

S. Wang, Z. Jiao, X. Huang, C. Yang, and N. Nguyen, “Acoustically induced bubbles in a microfluidic channel for mixing enhancement,” Microfluid. Nanofluid.6(6), 847–852 (2009).
[CrossRef]

Nat. Commun.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Nat. Phys.

H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nat. Phys.7(4), 321–324 (2011).
[CrossRef]

Phys. Rev. E

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82(5), 051407 (2011).
[CrossRef]

Prog. Polym. Sci.

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci.24, 665–697 (1999).
[CrossRef]

Science

I. R. Young, S. Zieger, and A. V. Babanin, “Global trends in wind speed and wave height,” Science332(6028), 451–455 (2011).
[CrossRef] [PubMed]

Sens. Actuators B

D. Lange, C. Storment, C. Conley, and G. Kovacs, “A microfluidic shadow imaging system for the study of the nematode caenorhabditis elegans in space,” Sens. Actuators B107(2), 904–914 (2005).
[CrossRef]

S. Igarashi, A. Itakura, M. Toda, M. Kitajima, L. Chu, A. Chifen, R. Forch, and R. Berger, “Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy,” Sens. Actuators B117(1), 43–49 (2006).
[CrossRef]

A. Isha, N. Yusof, M. Ahmad, D. Suhendra, W. Yunus, and Z. Zainal, “A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate,” Sens. Actuators B114 (1), 344–349 (2006).
[CrossRef]

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159(1), 39–43 (2011).
[CrossRef]

Other

P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2005).

Y. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Parts of optofluidic sensor: the bottom plate was glass, the channel profile was cut out of a transfer adhesive film (ARclad 8026, Adhesives Research Inc.) by a CO2-cutter, and the top plate was PMMA. Gold mirrors were ∼ 40-nm-thick.

Fig. 2
Fig. 2

Adhesive film-based designs for micro-fluidic chip fabrication. Realization of different optofluidic designs all using the principle shown in Fig. 1: (a) realization of two channels in one chip (“A” and “B”; this design is used for the refractive index and pressure sensing measurements), (b) fluid selector, (c) flat chip for reduction of the back-pressure in high-flow chip and (d) fiber-in-a-channel at cross-aligned geometry. Food dyes are used in the selector shown in (b), at the equal pressures in both shoulders; by changing relative pressure in the channels one or the other dye/solution can be delivered.

Fig. 3
Fig. 3

Transients of spectral peak shifts in the case of different solutions and switching between them. The refractive index of water and the 4:1 mixture with glycerol were nw = 1.333 and ng25% = 1.364, respectively, at wavelengths ∼ 650 nm. Arrows show switching between water and glycerol solutions. The λ0 is the starting position of the FP peak; a horizontal offset was used for clarity. Three measurements were carried out in separate identically prepared chips. Spot size of the beam used in spectral measurements of transmission was ∼ 1 mm. Measurements were carried out after filling the channels without flow or when liquids were exchanged the flow rate was 0.04 m/s. Spectral sampling rate: one point per 15 s. Finesse of the FP cavity F = 2.6.

Fig. 4
Fig. 4

Spectral shifts of the FP-fringes over time by switching ON/OFF peristaltic pump. The pump rotation speeds are: (a) 0.1 and (b) 10 rpm; corresponding to: 0.38 cm/s and 0.38 m/s flow velocity. The pump switching ON-OFF transients are marked; dashed-lines are eye guides for the peak tracking. Spectral sampling rate: point per 1 s (a) and 5 points per 1 s (b).

Fig. 5
Fig. 5

Experimental measurements of a differential pressure, ΔP, created by the peristaltic pump at different pump rotation speeds. Line is the linear fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 1 + ρ g h 1 + 1 2 ρ v 1 2 = P 2 + ρ g h 2 + 1 2 ρ v 2 2

Metrics