Abstract

Detailed comparative spectroscopic studies of Nd3+ doped YAG nanocrystals, transparent ceramic and single crystal have been performed. Although most of the radiative spectral properties of Nd3+ are almost in good agreement between the three hosts, the non-radiative losses are significantly high in nanocrystals, which are attributed due to the presence of large amount of hydroxyl groups on the nanocrystals surface which deteriorates the quality of the material for laser applications. In addition, wavelength dependent scattering loss for the Nd3+ doped YAG nanocrystals is found significantly high compared to those of Nd3+ doped single crystal and ceramic.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
    [CrossRef]
  2. R. Boulesteix, A. Maître, J. F. Baumard, Y. Rabinovitch, and F. Reynaud, “Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties,” Opt. Express18(14), 14992–15002 (2010).
    [CrossRef] [PubMed]
  3. S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
    [CrossRef]
  4. H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009).
    [CrossRef]
  5. A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc.79(7), 1921–1926 (1996).
    [CrossRef]
  6. A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997).
    [CrossRef]
  7. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  8. J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
    [CrossRef]
  9. J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
    [CrossRef]
  10. X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).
  11. H. Liu, Y. Sang, H. Qin, Y. Lv, and J. Wang, “Spray freeze drying method for preparation of Nd-doped yttrium aluminum garnet micro-sized and nano-sized powders” (Shandong University, China, 2011), 6 pp.
  12. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
    [CrossRef]
  13. Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China)41, 33–35 (2009).
  14. L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
    [PubMed]
  15. P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).
  16. X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).
  17. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc.78(1), 225–228 (1995).
    [CrossRef]
  18. M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990).
    [CrossRef]
  19. M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991).
    [CrossRef]
  20. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
    [CrossRef]
  21. A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
    [CrossRef]
  22. D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007).
    [CrossRef]
  23. D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
    [CrossRef]
  24. G. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
    [CrossRef]
  25. A. A. Kaminskii, Laser Crystals: Physics and Properties (Springer-Verlag, 1979).
  26. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1990).
  27. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999).
    [CrossRef]
  28. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B3(1), 102–114 (1986).
    [CrossRef]
  29. D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
    [CrossRef]
  30. D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
    [CrossRef]
  31. A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
    [CrossRef]
  32. G. D. Yoder, P. K. Diwakar, and D. W. Hahn, “Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering,” Appl. Opt.44(20), 4211–4219 (2005).
    [CrossRef] [PubMed]
  33. W. Chen, Doped Nanomaterials and Nanodevices (American Scientific Publishers, 2010).
  34. D. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys.21(5), 836–850 (1953).
    [CrossRef]
  35. B. Di Bartolo and G. Armagan, A. International School of Atomic and Molecular Spectroscopy, Spectroscopy of Solid-State Laser-Type Materials (Plenum Press, 1987).
  36. D. E. Day and J. M. Stevels, “Effect of dissolved water on the internal friction of glass,” J. Non-Cryst. Solids14(1), 165–177 (1974).
    [CrossRef]

2011 (3)

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

2010 (1)

2009 (3)

Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China)41, 33–35 (2009).

H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009).
[CrossRef]

X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).

2008 (2)

J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
[CrossRef]

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

2007 (4)

P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).

D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007).
[CrossRef]

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

2006 (2)

D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
[CrossRef]

D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
[CrossRef]

2005 (1)

2004 (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

2003 (1)

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

2002 (1)

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
[CrossRef]

2000 (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

1999 (1)

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999).
[CrossRef]

1997 (1)

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997).
[CrossRef]

1996 (1)

A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc.79(7), 1921–1926 (1996).
[CrossRef]

1995 (1)

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc.78(1), 225–228 (1995).
[CrossRef]

1991 (1)

M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991).
[CrossRef]

1990 (1)

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990).
[CrossRef]

1986 (1)

1974 (1)

D. E. Day and J. M. Stevels, “Effect of dissolved water on the internal friction of glass,” J. Non-Cryst. Solids14(1), 165–177 (1974).
[CrossRef]

1962 (2)

G. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

1953 (1)

D. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Ahmad, M.

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Allik, T. H.

D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
[CrossRef]

An, L.

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

Arif, M.

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Baumard, J. F.

Boulesteix, R.

Butashin, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Caird, J. A.

Chen, D.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

Day, D. E.

D. E. Day and J. M. Stevels, “Effect of dissolved water on the internal friction of glass,” J. Non-Cryst. Solids14(1), 165–177 (1974).
[CrossRef]

Dee, D. M.

D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
[CrossRef]

Dexter, D.

D. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Diwakar, P. K.

Durrani, S. K.

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Fan, Y.

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

Feofilov, S. P.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999).
[CrossRef]

Furusato, I.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc.78(1), 225–228 (1995).
[CrossRef]

Gong, H.

H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009).
[CrossRef]

Gruber, J. B.

D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007).
[CrossRef]

D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
[CrossRef]

D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
[CrossRef]

Guo, J.

J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
[CrossRef]

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

Hahn, D. W.

Haneda, H.

M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991).
[CrossRef]

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990).
[CrossRef]

Huang, H.

H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009).
[CrossRef]

Hussain, N.

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Ikesue, A.

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
[CrossRef]

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997).
[CrossRef]

A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc.79(7), 1921–1926 (1996).
[CrossRef]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc.78(1), 225–228 (1995).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kamata, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc.79(7), 1921–1926 (1996).
[CrossRef]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc.78(1), 225–228 (1995).
[CrossRef]

Kaminskii, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Kaminskii, A. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Konstantinova, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Kozlowska, A.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Krupke, W. F.

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Li, B.

P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Li, J.

J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
[CrossRef]

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

Li, R.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

Li, X.-X.

X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).

Librant, Z.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Liu, D.

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

Liu, F.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

Liu, H.

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

Liu, W.

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

Liu, Z.

Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China)41, 33–35 (2009).

Lu, J.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Lukasiewicz, T.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Luo, J.

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

Luo, X.-M.

X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).

Ma, E.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

Ma, J.

H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009).
[CrossRef]

Maître, A.

Malg, A.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Marion, J. E.

Meltzer, R. S.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999).
[CrossRef]

Mohammad, T.

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Musha, M.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Nakielska, M.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Nash, K. L.

D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007).
[CrossRef]

D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
[CrossRef]

Ofelt, G.

G. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Orekhova, V.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Pan, Y.

J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
[CrossRef]

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

Pang, C.

Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China)41, 33–35 (2009).

Podniesiski, D.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Qin, H.

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

Qiu, F.

J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
[CrossRef]

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

Qiu, G.-B.

X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).

Qureshi, A. H.

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Rabinovitch, Y.

Reynaud, F.

Saeed, K.

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Sang, Y.

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

Sardar, D. K.

D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007).
[CrossRef]

D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
[CrossRef]

D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
[CrossRef]

Sekita, M.

M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991).
[CrossRef]

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990).
[CrossRef]

Shinn, M. D.

Shirasaki, S.

M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991).
[CrossRef]

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990).
[CrossRef]

Shirokava, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Stevels, J. M.

D. E. Day and J. M. Stevels, “Effect of dissolved water on the internal friction of glass,” J. Non-Cryst. Solids14(1), 165–177 (1974).
[CrossRef]

Stokowski, S. E.

Su, S.-J.

X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).

Takaichi, K.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Tang, D.-Y.

H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009).
[CrossRef]

Tissue, B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999).
[CrossRef]

Ueda, K.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Ueda, K.-I.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Uematsu, T.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

Unnikrishnan, N. V.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Wajler, A.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Wang, J.

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).

Wang, L.

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

Wang, W.-J.

X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).

Wang, Y.

P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

Wen, W.

Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China)41, 33–35 (2009).

Wglarz, H.

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Wu, Y.

J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
[CrossRef]

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

Xu, H.

P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).

Xu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Yagi, H.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Yamaga, I.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997).
[CrossRef]

Yamamoto, T.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997).
[CrossRef]

Yanagitani, T.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991).
[CrossRef]

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990).
[CrossRef]

Yoder, G. D.

Yoshida, K.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997).
[CrossRef]

A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc.79(7), 1921–1926 (1996).
[CrossRef]

Yow, R. M.

D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007).
[CrossRef]

D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
[CrossRef]

D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
[CrossRef]

Yu, Y.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

Yuan, H. B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999).
[CrossRef]

Yuan, P.

P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).

Zandi, B.

D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
[CrossRef]

Zhang, L.

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

Zhang, P.

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

Zhang, X.

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

Appl. Opt. (1)

Appl. Phys. B (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B71(4), 469–473 (2000).
[CrossRef]

Cailiao Kaifa Yu Yingyong (1)

X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong24, 33–38 (2009).

Ceram. Int. (2)

J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int.34(1), 141–149 (2008).
[CrossRef]

J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int.33(6), 1047–1052 (2007).
[CrossRef]

Crystallogr. Rep. (1)

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep.48(5), 868–871 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

J. Am. Ceram. Soc. (4)

H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(4), 812–817 (2009).
[CrossRef]

A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc.79(7), 1921–1926 (1996).
[CrossRef]

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc.80(6), 1517–1522 (1997).
[CrossRef]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc.78(1), 225–228 (1995).
[CrossRef]

J. Appl. Phys. (5)

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys.67(1), 453–458 (1990).
[CrossRef]

M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys.69(6), 3709–3718 (1991).
[CrossRef]

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102(2), 023504 (2007).
[CrossRef]

D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys.101(11), 113115 (2007).
[CrossRef]

D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f 3) in polycrystalline ceramic Y2O3,” J. Appl. Phys.100(12), 123106 (2006).
[CrossRef]

J. Chem. Phys. (2)

G. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

D. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

J. Lumin. (1)

D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin.116(1-2), 145–150 (2006).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol.8(3), 1454–1457 (2008).
[PubMed]

J. Non-Cryst. Solids (1)

D. E. Day and J. M. Stevels, “Effect of dissolved water on the internal friction of glass,” J. Non-Cryst. Solids14(1), 165–177 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Rare Earths (1)

X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths29, 585–591 (2011).

J. Therm. Anal. Calorim. (1)

S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nd-doped YAG powder by sol spray process,” J. Therm. Anal. Calorim.104(2), 645–651 (2011).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B (1)

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B60(20), R14012–R14015 (1999).
[CrossRef]

Proc. SPIE (1)

A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE7934, 79341B, 79341B-6 (2011).
[CrossRef]

Taoci (Xianyang, China) (1)

Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China)41, 33–35 (2009).

Zhongguo Fenti Jishu (1)

P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu13, 8–10, 20 (2007).

Other (5)

H. Liu, Y. Sang, H. Qin, Y. Lv, and J. Wang, “Spray freeze drying method for preparation of Nd-doped yttrium aluminum garnet micro-sized and nano-sized powders” (Shandong University, China, 2011), 6 pp.

A. A. Kaminskii, Laser Crystals: Physics and Properties (Springer-Verlag, 1979).

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1990).

B. Di Bartolo and G. Armagan, A. International School of Atomic and Molecular Spectroscopy, Spectroscopy of Solid-State Laser-Type Materials (Plenum Press, 1987).

W. Chen, Doped Nanomaterials and Nanodevices (American Scientific Publishers, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

An overview of synthesis protocol using urea precipitation method.

Fig. 2
Fig. 2

(a) XRD patterns of Nd3+: YAG nanocrystals and its comparison with the standard patterns of YAG (JCPDS No. 33–0040 (b) EDX spectrum of Nd3+: YAG nanocrystals (c) SEM image of Nd3+: YAG nanocrystals (d) TEM images of (400) plane with lattice spacing.

Fig. 3
Fig. 3

Absorption spectrum of Nd3+: YAG nanocrystals at room temperature ranging between 300 and 1000 nm compared to ceramics, and single crystals. SC: Single Crystal, CE: Ceramic, and NC: Nanocrystals.

Fig. 4
Fig. 4

Fluorescence spectra of Nd3+: YAG nanocrystals within the manifold 4F3/24I9/2, 11/2, 13/2, 15/2 transitions at room temperature compared with ceramic and single crystal. Inset of the figure shows the samples studied for comparison.

Fig. 5
Fig. 5

Fluorescence spectra for Nd3+: YAG nanocrystals within the manifold 4F3/24I9/2, 4F3/24I11/2, 4F3/24I13/2, and 4F3/24I15/2 transitions at room temperature.

Fig. 6
Fig. 6

Energy level diagrams of Nd3+: YAG nanocrystals for the observed inter-Stark transitions within the 4F3/24I9/2 4F3/24I11/2, 4F3/24I13/2, and 4F3/24I15/2 manifolds transitions at room temperature.

Fig. 7
Fig. 7

Dependance of scattering loss coefficients of Nd3+: YAG nanocrystals to wavelength and its comparison with single crystal and ceramic.

Fig. 8
Fig. 8

FTIR spectrum of Nd3+: YAG nanocrystals compared to single crystal and ceramics.

Fig. 9
Fig. 9

Fluorescence decay curve for 1060 nm emission in Nd3+: YAG nanocrystals.

Tables (7)

Tables Icon

Table 1 Measured and Calculated Absorption Line Strengths of Nd3+ in Nd3+ Doped YAG Nanocrystal

Tables Icon

Table 2 Predicted Fluorescence line Strengths (Scalc), Radiative Decay Rates(Ajj’), Branching Rations (βjj’), and Radiative lifetime of Nd3+in Nd3+ Doped YAG Nanocrystal at 300 K

Tables Icon

Table 3 Radiative Properties of Various Stark Levels Observed for the Transition within the Manifold 4F3/24I9/2, and Its Comparison with the Single Crystal and Ceramic

Tables Icon

Table 4 Radiative Properties of Various Stark Levels Observed for the Transition within the Manifold 4F3/24I11/2, and Its Comparison with the Single Crystal and Ceramic

Tables Icon

Table 5 Radiative Properties of Various Stark Levels Observed for the Transition within the Manifold 4F3/24I13/2, and Its Comparison with the Single Crystal and Ceramic

Tables Icon

Table 6 Radiative Properties of Various Stark Levels Observed for the Transition within the Manifold 4F3/24I15/2, and Its Comparison with the Single Crystal and Ceramic

Tables Icon

Table 7 Spectroscopic Properties of 1.5% Nd3+ Doped YAG Nano Particles and Its Comparison with 1% Nd3+ Doped YAG Single Crystal and Ceramic

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

σ p ( R 1,2 W,X,Y,Z )= λ p 2 4π n 2 cΔ ν ˜ [ ln2 π ] 1/2 A( R 1,2 W,X,Y,Z ),
σ p ( R 1 Y 2 )= λ p 2 4π n 2 cΔ ν ˜ [ ln2 π ] 1/2 A( R 1 Y 2 ),
A( R 1 Y 2 )=( 1+ e Δ/kT )β( R 1 Y 2 )×β( 4 F 3/2 4 I 11/2 )τ ( 4 F 3/2 ) 1 ,
σ( J,J'; ν ˜ )= λ 2 8πc n 2 β( J,J' ) τ J g( ν ˜ ),
g( ν ˜ )= I( ν ˜ ) I( ν ˜ )d ν ˜ ,
α(λ)= t 1 ln[ I(λ)/ I 0 (λ)T (λ) 2 ],
β(λ)=[ (n(λ)1) 2 / (n(λ)+1) 2 ],
1 τ lum = A rad + W mp + W OH + W ET ,
W ET α 1 R DA 6 α N 2 ,
W mp =B exp αΔE ,

Metrics