Abstract

We report on the recording of stabilized running holograms in photorefractive materials with arbitrarily selected phase shift φ between the transmitted and difracted beams propagating along the same direction behind the photorefractive crystal. The dependence of the diffraction efficiency and of the hologram speed on φ, in such stabilized holograms, can be easily measured and used for material characterization. In this communication we applied for the first time this technique for studying and characterizing hole-electron competition in a nominally undoped titanosillenite crystal sample.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, Oxford, 1996).
  2. S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “Running holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun.44, 19–23 (1982).
    [CrossRef]
  3. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space–charge waves and their parametric excitation,” J. Opt. Soc. Am. B10, 1919–1932 (1993).
    [CrossRef]
  4. B. I. Sturman, M. Mann, and K. H. Ringhofer, “Instability of the resonance enhancement of moving photorefractive gratings,” Opt. Lett.18, 702–704 (1993).
    [CrossRef] [PubMed]
  5. B. I. Sturman, E. V. Podivilov, A. I. Chemykh, K. H. Ringhofer, V. P. Kamenov, H. C. Pedersen, and P. M. Johansen, “Instability of the resonance excitation of space-charge waves in sillenite crystals,” J. Opt. Soc. Am. B16, 556–564 (1999).
    [CrossRef]
  6. M. Bryushinin, “Interaction of running gratings of the space charge and conductivity in photorefractive Bi12Si(Ti)O20 crystals,” Appl. Phys. B79, 851–856 (2004).
    [CrossRef]
  7. I. de Oliveira and J. Frejlich, “Photorefractive running hologram for materials characterization,” J. Opt. Soc. Am. B18, 291–297 (2001).
    [CrossRef]
  8. M. Bryushinin, V. Kulikov, and I. Sokolov, “Combined excitation of running space charge and conductivity gratings in photorefractive crystals,” Phys. Rev. B71, 165208 (2005).
    [CrossRef]
  9. I. de Oliveira and J. Frejlich, “Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals,” J. Opt. Soc. Am. B26, 1298–1302 (2007).
    [CrossRef]
  10. A. A. Kamshilin, J. Frejlich, and L. Cescato, “Photorefractive Crystals for the Stabilization of the Holographic Setup,” Appl. Opt.25, 2375–2381 (1986).
    [CrossRef] [PubMed]
  11. J. Frejlich, L. Cescato, and G. F. Mendes, “Analysis of an active stabilization system for a holographic setup,” Appl. Opt.27, 1967–1976 (1988).
    [CrossRef] [PubMed]
  12. J. Frejlich, P. M. Garcia, and L. Cescato, “Adaptive Fringe-Locked Running Hologram in Photorefractive Crystals,” Opt. Lett.14, 1210–1212 (1989).
    [CrossRef] [PubMed]
  13. I. de Oliveira and J. Frejlich, “Gain and stability in photorefractive two-wave mixing,” Phys. Rev. A64, 033806 (2001).
    [CrossRef]
  14. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett.11, 312–314 (1986).
    [CrossRef] [PubMed]
  15. J. Frejlich, “Fringe-Locked Running Hologram and Multiple Photoactive Species in Bi12TiO20,” J. Appl. Phys.68, 3104–3109 (1990).
    [CrossRef]
  16. R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
    [CrossRef]
  17. E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997).
    [CrossRef]
  18. J. Frejlich, A. A. Freschi, P. M. Garcia, E. Shamonina, V. Y. Gayvoronsky, and K. H. Ringhofer, “Feedback-controlled running holograms in strongly absorbing photorefractive materials,” J. Opt. Soc. Am. B17, 1517–1521 (2000).
    [CrossRef]
  19. M. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B72, 717–721 (2001).
    [CrossRef]
  20. A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009).
    [CrossRef]
  21. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett.20, 635–637 (1995).
    [CrossRef] [PubMed]
  22. A. A. Freschi, P. M. Garcia, and J. Frejlich, “Phase–controlled photorefractive running holograms,” Opt. Commun.143, 257–260 (1997).
    [CrossRef]
  23. R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt.10, 104006 (2008).
    [CrossRef]
  24. G. C. Valley, “Erase rates in photorefractive materials with two photoactive species,” Appl. Opt.22, 3160–3164 (1983).
    [CrossRef] [PubMed]
  25. M. Carrascosa and F. Agullo-Lopez, “Erasure of holographic gratings in photorefractive materials with two active species,” Appl. Opt.27, 2851–2857 (1988).
    [CrossRef] [PubMed]
  26. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64, 273–291 (1997).
    [CrossRef]
  27. I. de Oliveira, R. Montenegro, and J. Frejlich, “Hole-electron electrical coupling in photorefractive materials,” Appl. Phys. Lett.95, 241908 (2009).
    [CrossRef]
  28. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, New York, 2006).
  29. V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109, 024901 (2011).
    [CrossRef]

2011 (1)

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109, 024901 (2011).
[CrossRef]

2009 (3)

I. de Oliveira, R. Montenegro, and J. Frejlich, “Hole-electron electrical coupling in photorefractive materials,” Appl. Phys. Lett.95, 241908 (2009).
[CrossRef]

A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009).
[CrossRef]

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

2008 (1)

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt.10, 104006 (2008).
[CrossRef]

2007 (1)

I. de Oliveira and J. Frejlich, “Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals,” J. Opt. Soc. Am. B26, 1298–1302 (2007).
[CrossRef]

2005 (1)

M. Bryushinin, V. Kulikov, and I. Sokolov, “Combined excitation of running space charge and conductivity gratings in photorefractive crystals,” Phys. Rev. B71, 165208 (2005).
[CrossRef]

2004 (1)

M. Bryushinin, “Interaction of running gratings of the space charge and conductivity in photorefractive Bi12Si(Ti)O20 crystals,” Appl. Phys. B79, 851–856 (2004).
[CrossRef]

2001 (3)

I. de Oliveira and J. Frejlich, “Gain and stability in photorefractive two-wave mixing,” Phys. Rev. A64, 033806 (2001).
[CrossRef]

M. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B72, 717–721 (2001).
[CrossRef]

I. de Oliveira and J. Frejlich, “Photorefractive running hologram for materials characterization,” J. Opt. Soc. Am. B18, 291–297 (2001).
[CrossRef]

2000 (1)

1999 (1)

1997 (3)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64, 273–291 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Phase–controlled photorefractive running holograms,” Opt. Commun.143, 257–260 (1997).
[CrossRef]

1995 (1)

1993 (2)

1990 (1)

J. Frejlich, “Fringe-Locked Running Hologram and Multiple Photoactive Species in Bi12TiO20,” J. Appl. Phys.68, 3104–3109 (1990).
[CrossRef]

1989 (1)

1988 (2)

1986 (2)

1983 (1)

1982 (1)

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “Running holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun.44, 19–23 (1982).
[CrossRef]

Agullo-Lopez, F.

Barbosa, M.

M. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B72, 717–721 (2001).
[CrossRef]

Bryushinin, M.

M. Bryushinin, V. Kulikov, and I. Sokolov, “Combined excitation of running space charge and conductivity gratings in photorefractive crystals,” Phys. Rev. B71, 165208 (2005).
[CrossRef]

M. Bryushinin, “Interaction of running gratings of the space charge and conductivity in photorefractive Bi12Si(Ti)O20 crystals,” Appl. Phys. B79, 851–856 (2004).
[CrossRef]

Buse, K.

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64, 273–291 (1997).
[CrossRef]

Carrascosa, M.

Carvalho, J. F.

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

Cescato, L.

Chemykh, A. I.

de Oliveira, I.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109, 024901 (2011).
[CrossRef]

I. de Oliveira, R. Montenegro, and J. Frejlich, “Hole-electron electrical coupling in photorefractive materials,” Appl. Phys. Lett.95, 241908 (2009).
[CrossRef]

I. de Oliveira and J. Frejlich, “Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals,” J. Opt. Soc. Am. B26, 1298–1302 (2007).
[CrossRef]

I. de Oliveira and J. Frejlich, “Photorefractive running hologram for materials characterization,” J. Opt. Soc. Am. B18, 291–297 (2001).
[CrossRef]

I. de Oliveira and J. Frejlich, “Gain and stability in photorefractive two-wave mixing,” Phys. Rev. A64, 033806 (2001).
[CrossRef]

Frejlich, J.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109, 024901 (2011).
[CrossRef]

I. de Oliveira, R. Montenegro, and J. Frejlich, “Hole-electron electrical coupling in photorefractive materials,” Appl. Phys. Lett.95, 241908 (2009).
[CrossRef]

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009).
[CrossRef]

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt.10, 104006 (2008).
[CrossRef]

I. de Oliveira and J. Frejlich, “Detection of resonance space-charge wave peaks for holes and electrons in photorefractive crystals,” J. Opt. Soc. Am. B26, 1298–1302 (2007).
[CrossRef]

I. de Oliveira and J. Frejlich, “Photorefractive running hologram for materials characterization,” J. Opt. Soc. Am. B18, 291–297 (2001).
[CrossRef]

I. de Oliveira and J. Frejlich, “Gain and stability in photorefractive two-wave mixing,” Phys. Rev. A64, 033806 (2001).
[CrossRef]

M. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B72, 717–721 (2001).
[CrossRef]

J. Frejlich, A. A. Freschi, P. M. Garcia, E. Shamonina, V. Y. Gayvoronsky, and K. H. Ringhofer, “Feedback-controlled running holograms in strongly absorbing photorefractive materials,” J. Opt. Soc. Am. B17, 1517–1521 (2000).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Phase–controlled photorefractive running holograms,” Opt. Commun.143, 257–260 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997).
[CrossRef]

A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett.20, 635–637 (1995).
[CrossRef] [PubMed]

J. Frejlich, “Fringe-Locked Running Hologram and Multiple Photoactive Species in Bi12TiO20,” J. Appl. Phys.68, 3104–3109 (1990).
[CrossRef]

J. Frejlich, P. M. Garcia, and L. Cescato, “Adaptive Fringe-Locked Running Hologram in Photorefractive Crystals,” Opt. Lett.14, 1210–1212 (1989).
[CrossRef] [PubMed]

J. Frejlich, L. Cescato, and G. F. Mendes, “Analysis of an active stabilization system for a holographic setup,” Appl. Opt.27, 1967–1976 (1988).
[CrossRef] [PubMed]

A. A. Kamshilin, J. Frejlich, and L. Cescato, “Photorefractive Crystals for the Stabilization of the Holographic Setup,” Appl. Opt.25, 2375–2381 (1986).
[CrossRef] [PubMed]

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, New York, 2006).

Freschi, A. A.

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt.10, 104006 (2008).
[CrossRef]

J. Frejlich, A. A. Freschi, P. M. Garcia, E. Shamonina, V. Y. Gayvoronsky, and K. H. Ringhofer, “Feedback-controlled running holograms in strongly absorbing photorefractive materials,” J. Opt. Soc. Am. B17, 1517–1521 (2000).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Phase–controlled photorefractive running holograms,” Opt. Commun.143, 257–260 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997).
[CrossRef]

A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett.20, 635–637 (1995).
[CrossRef] [PubMed]

Garcia, P. M.

J. Frejlich, A. A. Freschi, P. M. Garcia, E. Shamonina, V. Y. Gayvoronsky, and K. H. Ringhofer, “Feedback-controlled running holograms in strongly absorbing photorefractive materials,” J. Opt. Soc. Am. B17, 1517–1521 (2000).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Phase–controlled photorefractive running holograms,” Opt. Commun.143, 257–260 (1997).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997).
[CrossRef]

J. Frejlich, P. M. Garcia, and L. Cescato, “Adaptive Fringe-Locked Running Hologram in Photorefractive Crystals,” Opt. Lett.14, 1210–1212 (1989).
[CrossRef] [PubMed]

Gayvoronsky, V. Y.

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, Oxford, 1996).

Hellwarth, R. W.

Jerez, V.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109, 024901 (2011).
[CrossRef]

Johansen, P. M.

Jonathan, J. M. C.

Kamenov, V. P.

Kamshilin, A. A.

Kulikov, V.

M. Bryushinin, V. Kulikov, and I. Sokolov, “Combined excitation of running space charge and conductivity gratings in photorefractive crystals,” Phys. Rev. B71, 165208 (2005).
[CrossRef]

Kulikov, V. V.

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “Running holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun.44, 19–23 (1982).
[CrossRef]

Kumamoto, R.

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

Lorduy, H.

A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009).
[CrossRef]

Mann, M.

Mendes, G. F.

Montenegro, R.

A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009).
[CrossRef]

I. de Oliveira, R. Montenegro, and J. Frejlich, “Hole-electron electrical coupling in photorefractive materials,” Appl. Phys. Lett.95, 241908 (2009).
[CrossRef]

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt.10, 104006 (2008).
[CrossRef]

Mosquera, L.

M. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B72, 717–721 (2001).
[CrossRef]

Otten, J.

Pedersen, H. C.

Petrov, M. P.

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “Running holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun.44, 19–23 (1982).
[CrossRef]

Podivilov, E. V.

Ringhofer, K. H.

Salazar, A.

A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009).
[CrossRef]

Santana, R. C.

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

Shamonina, E.

J. Frejlich, A. A. Freschi, P. M. Garcia, E. Shamonina, V. Y. Gayvoronsky, and K. H. Ringhofer, “Feedback-controlled running holograms in strongly absorbing photorefractive materials,” J. Opt. Soc. Am. B17, 1517–1521 (2000).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997).
[CrossRef]

Shumelyuk, A.

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

Sokolov, I.

M. Bryushinin, V. Kulikov, and I. Sokolov, “Combined excitation of running space charge and conductivity gratings in photorefractive crystals,” Phys. Rev. B71, 165208 (2005).
[CrossRef]

Solymar, L.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, Oxford, 1996).

Stepanov, S. I.

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “Running holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun.44, 19–23 (1982).
[CrossRef]

Strohkendl, F. P.

Sturman, B. I.

Valley, G. C.

Webb, D. J.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, Oxford, 1996).

Appl. Opt. (4)

Appl. Phys. B (4)

M. Bryushinin, “Interaction of running gratings of the space charge and conductivity in photorefractive Bi12Si(Ti)O20 crystals,” Appl. Phys. B79, 851–856 (2004).
[CrossRef]

R. Montenegro, A. Shumelyuk, R. Kumamoto, J. F. Carvalho, R. C. Santana, and J. Frejlich, “Vanadium-doped photorefractive titanosillenite crystal,” Appl. Phys. B95, 475–482 (2009).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64, 273–291 (1997).
[CrossRef]

M. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B72, 717–721 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

I. de Oliveira, R. Montenegro, and J. Frejlich, “Hole-electron electrical coupling in photorefractive materials,” Appl. Phys. Lett.95, 241908 (2009).
[CrossRef]

J. Appl. Phys. (2)

J. Frejlich, “Fringe-Locked Running Hologram and Multiple Photoactive Species in Bi12TiO20,” J. Appl. Phys.68, 3104–3109 (1990).
[CrossRef]

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109, 024901 (2011).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt.10, 104006 (2008).
[CrossRef]

A. Salazar, H. Lorduy, R. Montenegro, and J. Frejlich, “An improved procedure for fringe-locked photorefractive running hologram data processing,” J. Opt. A: Pure Appl. Opt.11, 045201 (2009).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (3)

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “Running holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun.44, 19–23 (1982).
[CrossRef]

E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction efficiency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun.141, 132–136 (1997).
[CrossRef]

A. A. Freschi, P. M. Garcia, and J. Frejlich, “Phase–controlled photorefractive running holograms,” Opt. Commun.143, 257–260 (1997).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

I. de Oliveira and J. Frejlich, “Gain and stability in photorefractive two-wave mixing,” Phys. Rev. A64, 033806 (2001).
[CrossRef]

Phys. Rev. B (1)

M. Bryushinin, V. Kulikov, and I. Sokolov, “Combined excitation of running space charge and conductivity gratings in photorefractive crystals,” Phys. Rev. B71, 165208 (2005).
[CrossRef]

Other (2)

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, Oxford, 1996).

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diffraction efficiency η data (•) plotted as a function of φ for E0 = 5.6 kV/cm and K = 9.9 μm−1, β2 = 57 with total incident irradiance I0 = 25.4 mW/cm2, together with a theoretical curve with the parameters reported in the first row in Table 1.

Fig. 2
Fig. 2

Detunning Ω = Kv data (•) plotted as a function of φ for E0 = 5.6 kV/cm and K = 9.9 μm−1, β2 = 57 with total incident irradiance I0 = 25.4 mW/cm2, together with a theoretical curve with the parameters reported in the second row in Table 1.

Fig. 3
Fig. 3

Diffraction efficiency η data (•) plotted as a function of detunning Ω = Kv for E0 = 6.5 kV/cm and K = 2.1 μm−1, β2 = 29, with total incident irradiance I0 = 17.3 mW/cm2, together with the theoretical best fitting curve with the parameters as reported in the third row in Table 1.

Tables (1)

Tables Icon

Table 1 Material Parameters

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

τ sc 1 E sc 1 ( t ) t + E sc 1 ( t ) + κ 12 E sc 2 ( t ) + m E eff 1 e ι Ω t = 0
τ sc 2 E sc 2 ( t ) t + E sc 2 ( t ) + κ 21 E sc 1 ( t ) + m E eff 2 e ι Ω t = 0
E eff j E 0 + ι E D j 1 + K 2 l s j 2 ι K l E j
1 τ scj = 1 τ M j 1 + K 2 l s j 2 ι K l E j 1 + K 2 L D j 2 ι K L E j = ω R j + ι ω I j
τ M j = ε ε 0 / ( q μ j 𝒩 j )
κ 12 = ξ 1 1 + K 2 l s 1 2 ι K l E 1 κ 21 = ξ 2 1 + K 2 l s 2 2 ι K l E 2
E D 1 = K k B T / q E D 2 = K k B T / q
K L E j = K 2 L D j 2 E 0 / E D j
K l E j = E 0 / E q j
E sc ( t ) = E sc 1 ( t ) + E sc 2 ( t ) = m E sc st e i Ω t
E sc st = E eff 1 ω R 1 + ι ω I 1 ω R 1 + ι ω I 1 ι Ω + E eff 2 ω R 2 + ι ω I 2 ω R 2 + ι ω I 2 ι Ω
η = 2 β 2 1 + β 2 cosh ( Γ ¯ d / 2 ) cos ( γ ¯ d / 2 ) β 2 e Γ ¯ d / 2 + e Γ ¯ d / 2
tan φ = sin ( γ ¯ d / 2 ) 1 β 2 1 + β 2 [ cosh ( Γ ¯ d / 2 ) cos ( γ ¯ d / 2 ) ] + sinh ( Γ ¯ d / 2 )
Γ ¯ d 0 d ( Γ ) d z Γ 2 π n 3 r eff λ { E sc st }
γ ¯ d 0 d ( γ ) d z γ 2 π n 3 r eff λ { E sc st }
τ M j ( z ) = τ M j ( 0 ) e α z τ M j ( 0 ) = ε ε 0 ( k B T / q ) h ν q L D j 2 α I ( 0 ) Φ j

Metrics