Abstract

Multicrystalline silicon solar cells play an increasingly important role in the world photovoltaic market. Boosting the comparatively low energy conversion efficiency of multicrystalline silicon solar cells is of great academic and industrial significance. In this paper, Au nanoparticles of an optimized size, synthesized by the iterative seeding method, were integrated onto industrially available surface-textured multicrystalline silicon solar cells via a dip coating method. Enhanced performance of the light absorption, the external quantum efficiency and the energy conversion efficiency were consistently demonstrated, resulting from the light scattering by the sized-tailored Au nanoparticles placed on the front surface of the solar cells, particularly in the spectral range from 800 to 1200 nm, an enhancement of the external quantum efficiency by more than 11% near λ = 1150 nm and the short-circuit current by 0.93% were both observed. As a result, an increase in the energy conversion efficiency up to 1.97% under the standard testing conditions (25°C, global air mass 1.5 spectrum, 1000 Wm−2) was achieved. This study opens new perspectives for plasmonic nanoparticle applications for photon management in multicrystalline silicon solar cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schmela, “PV in the fast lane: market survey on world cell production in 2000,” Photon. Int.3, 32–35 (2001).
  2. A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
    [CrossRef]
  3. T. L. Temple and D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys.109(8), 084343 (2011).
    [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
    [CrossRef]
  5. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
    [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
    [CrossRef]
  7. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
    [CrossRef]
  8. Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011).
    [CrossRef]
  9. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
    [CrossRef]
  10. S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
    [CrossRef] [PubMed]
  11. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
    [CrossRef]
  12. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
    [CrossRef]
  13. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).
  14. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particles size and shape,” Chem. Mater.12(2), 306–313 (2000).
    [CrossRef]
  15. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal Au nanoparticles,” J. Phys. Chem. B103(21), 4212–4217 (1999).
    [CrossRef]
  16. J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006).
    [CrossRef] [PubMed]
  17. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
    [CrossRef]
  18. K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  19. S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
    [CrossRef]
  20. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photo- detectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
    [CrossRef]
  21. N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
    [CrossRef]
  22. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  23. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
    [CrossRef]
  24. R. D. Tilley and S. Saito, “Preparation of large scale monolayers of gold nanoparticles on modified silicon substrates using a controlled pulling method,” Langmuir19(12), 5115–5120 (2003).
    [CrossRef]
  25. T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
    [CrossRef]
  26. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
    [CrossRef]
  27. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
    [CrossRef]
  28. P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
    [CrossRef] [PubMed]
  29. M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express19(S1), A28–A34 (2011).
    [CrossRef] [PubMed]
  30. H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H. C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express19(S5), A1141–A1147 (2011).
    [CrossRef] [PubMed]
  31. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  32. T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
    [CrossRef] [PubMed]
  33. J. N. Munday, D. M. Callahan, C. Chen, and H. A. Atwater, “Three efficiency benefits from thin film plasmonic solar cells,” in Proceedings of Photovoltaic Specialists conference, 37th IEEE PVSC, June 19–24 (Settle, Washington, 2011), # 279.
  34. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  35. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
    [CrossRef] [PubMed]
  36. Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics4(2), 107–113 (2009).
    [CrossRef]
  37. M. A. Greenwood, “Photocurrent altered with nanoparticles,” Photon. Spectra106, (2008), http://www.photonics.com/Article.aspx?AID=32563 .

2011

T. L. Temple and D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys.109(8), 084343 (2011).
[CrossRef]

Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011).
[CrossRef]

N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express19(S1), A28–A34 (2011).
[CrossRef] [PubMed]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H. C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express19(S5), A1141–A1147 (2011).
[CrossRef] [PubMed]

2010

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

2009

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
[CrossRef] [PubMed]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics4(2), 107–113 (2009).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

2008

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

M. A. Greenwood, “Photocurrent altered with nanoparticles,” Photon. Spectra106, (2008), http://www.photonics.com/Article.aspx?AID=32563 .

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

2007

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

2006

J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

2005

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

2004

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

2003

R. D. Tilley and S. Saito, “Preparation of large scale monolayers of gold nanoparticles on modified silicon substrates using a controlled pulling method,” Langmuir19(12), 5115–5120 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2001

M. Schmela, “PV in the fast lane: market survey on world cell production in 2000,” Photon. Int.3, 32–35 (2001).

2000

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particles size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

1999

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal Au nanoparticles,” J. Phys. Chem. B103(21), 4212–4217 (1999).
[CrossRef]

1998

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photo- detectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

1996

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

1995

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

1973

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

Aberle, A. G.

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics4(2), 107–113 (2009).
[CrossRef]

Altermatt, P. P.

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Arif, R. A.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

Atwater, H. A.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Bachelier, G.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Bagnall, D. M.

T. L. Temple and D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys.109(8), 084343 (2011).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

Benichou, E.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Brevet, P. F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Brown, K. R.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particles size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

Chang, C.-H.

Chen, H.-C.

Coronado, E.

K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Das, N. C.

N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

Del Fatti, N.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Ee, Y.-K.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal Au nanoparticles,” J. Phys. Chem. B103(21), 4212–4217 (1999).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

García de Abajo, F. J.

J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006).
[CrossRef] [PubMed]

Gilchrist, J. F.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Grady, N. K.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Greenwood, M. A.

M. A. Greenwood, “Photocurrent altered with nanoparticles,” Photon. Spectra106, (2008), http://www.photonics.com/Article.aspx?AID=32563 .

Hachimura, H.

Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011).
[CrossRef]

Halas, N. J.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photo- detectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

Han, H.-W.

Heiser, G.

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Hyeon, T.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Ihara, M.

Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011).
[CrossRef]

Jonin, C.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Jung, B. G.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Kalkman, J.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kim, K.-B.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Kim, V.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
[CrossRef] [PubMed]

Krumbein, U.

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Kumnorkaew, P.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Kuo, H. C.

Kuo, H.-C.

Li, E. P.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics4(2), 107–113 (2009).
[CrossRef]

Li, X.-H.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Lin, C.-C.

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal Au nanoparticles,” J. Phys. Chem. B103(21), 4212–4217 (1999).
[CrossRef]

Liz-Marzán, L. M.

J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006).
[CrossRef] [PubMed]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

Min, S.-H.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Mirin, N.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Mishima, T.

Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011).
[CrossRef]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Natan, M. J.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particles size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

Oh, J.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Ostrikov, K.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics4(2), 107–113 (2009).
[CrossRef]

Park, J.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Park, S.-H.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Pérez-Juste, J.

J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006).
[CrossRef] [PubMed]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

Polman, A.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Robinson, S. J.

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Rodríguez-Fernández, J.

J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006).
[CrossRef] [PubMed]

Russier-Antoine, I.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Saito, S.

R. D. Tilley and S. Saito, “Preparation of large scale monolayers of gold nanoparticles on modified silicon substrates using a controlled pulling method,” Langmuir19(12), 5115–5120 (2003).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Schatz, G.

K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schmela, M.

M. Schmela, “PV in the fast lane: market survey on world cell production in 2000,” Photon. Int.3, 32–35 (2001).

Song, R.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photo- detectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

Sundararajan, S. P.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011).
[CrossRef]

Tansu, N.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Tchebotareva, A. L.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
[CrossRef] [PubMed]

Temple, T. L.

T. L. Temple and D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys.109(8), 084343 (2011).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Tilley, R. D.

R. D. Tilley and S. Saito, “Preparation of large scale monolayers of gold nanoparticles on modified silicon substrates using a controlled pulling method,” Langmuir19(12), 5115–5120 (2003).
[CrossRef]

Tong, H.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

Tsai, M.-A.

Tsai, Y.-L.

Tseng, P.-C.

Vahala, K. J.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
[CrossRef] [PubMed]

Vallée, F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Walter, D. G.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particles size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

Wang, A.

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Wang, H.-W.

Yoon, T.-S.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Yu, P.

Zhang, T.

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

Zhao, H.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

Zhao, L.

K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Adv. Funct. Mater.

T.-S. Yoon, J. Oh, S.-H. Park, V. Kim, B. G. Jung, S.-H. Min, J. Park, T. Hyeon, and K.-B. Kim, “Single and multiple-step dip coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates,” Adv. Funct. Mater.14(11), 1062–1068 (2004).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, T. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett.88(16), 161102 (2006).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle enhanced photo- detectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

Chem. Mater.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particles size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

ECS Trans.

Y. Tanaka, H. Hachimura, T. Mishima, and M. Ihara, “Plasmon effect in Si solar cells coated with a thin polymer film containing silver or Au nanoparticles,” ECS Trans.33, 81–91 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron.15(4), 1218–1225 (2009).
[CrossRef]

IEEE Photon. J.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011).
[CrossRef]

J. Appl. Phys.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

A. G. Aberle, P. P. Altermatt, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, U. Krumbein, and M. A. Green, “Limiting loss mechanisms in 23% efficient silicon solar cells,” J. Appl. Phys.77(7), 3491–3504 (1995).
[CrossRef]

T. L. Temple and D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys.109(8), 084343 (2011).
[CrossRef]

N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

J. Phys. Chem. B

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal Au nanoparticles,” J. Phys. Chem. B103(21), 4212–4217 (1999).
[CrossRef]

K. L. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Langmuir

R. D. Tilley and S. Saito, “Preparation of large scale monolayers of gold nanoparticles on modified silicon substrates using a controlled pulling method,” Langmuir19(12), 5115–5120 (2003).
[CrossRef]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir22(16), 7007–7010 (2006).
[CrossRef] [PubMed]

Nano Lett.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Nat. Phys. Sci (Lond.)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

Opt. Express

Photon. Int.

M. Schmela, “PV in the fast lane: market survey on world cell production in 2000,” Photon. Int.3, 32–35 (2001).

Photon. Spectra

M. A. Greenwood, “Photocurrent altered with nanoparticles,” Photon. Spectra106, (2008), http://www.photonics.com/Article.aspx?AID=32563 .

Phys. Rev. Lett.

T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman, and K. J. Vahala, “Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity,” Phys. Rev. Lett.103(2), 027406 (2009).
[CrossRef] [PubMed]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008).
[CrossRef] [PubMed]

Plasmonics

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics4(2), 107–113 (2009).
[CrossRef]

Prog. Photovolt. Res. Appl.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

J. N. Munday, D. M. Callahan, C. Chen, and H. A. Atwater, “Three efficiency benefits from thin film plasmonic solar cells,” in Proceedings of Photovoltaic Specialists conference, 37th IEEE PVSC, June 19–24 (Settle, Washington, 2011), # 279.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

FE-SEM micrographs for Au colloidal NPs of 61, 107 and 146 nm diameters, respectively at different magnifications {(a, d), (b, e), (c, f)}. High resolution TEM images of Au NPs of the above diameters (g, h, i), and histograms of particle size distributions for particle sizes of 61, 107 and 146 nm (A, B, C).

Fig. 2
Fig. 2

UV-vis absorption spectra of 61, 107 and 146 nm diameter Au colloidal NPs suspended in an aqueous solution. Peaks corresponding to the excitation of SPR are evident in (a). The inset shows the photograph of the synthesized colloidal solutions of the NPs. The SPR peak position as a function of the Au particle diameter as estimated from the SEM images (b).

Fig. 3
Fig. 3

EDX spectra of Au NPs deposited on the silicon substrate that supports the presence of Au peak. The trace from sodium detected in the spectra comes from the reactants.

Fig. 4
Fig. 4

A schematic diagram depicts the dip coating process to integrate Au NPs onto the top surface of Si solar cells. The real photograph of the experimental set-up is included.

Fig. 5
Fig. 5

FE-SEM micrographs of Au NPs of diameters 61 and 107 nm deposited on the top surface of mc-Si solar cells (a, b). The distribution of Au NPs on a large area of solar cells (c). The estimated surface coverage is about 12% from the SEM images. Mc-Si solar cell architecture incorporating Au NPs (d).

Fig. 6
Fig. 6

Reflectance of mc-Si solar cells before integration with Au NPs (a). The reflectance ratio (normalized to the same cells without NPs) of cells integrated with Au NPs of diameters 61, 107 and 146 nm relative to the same cell prior to the integration (b). For Au NPs of size 61 nm, an improvement in reflectance of 7% is observed over wavelengths ranging from 300 to 1200 nm with a sharp reduction peaked at 600 nm (25%).

Fig. 7
Fig. 7

EQE of solar cell prior to integration with NPs (a). EQE ratio (normalized to the same cells without NPs) of cells integrated with Au NPs of diameters 61, 107 and 146 nm relative to reference device prior to the Au NP integration is shown in (b). For Au NPs of 61 nm in diameter, it is evident that the EQE is enhanced by more than 11% at λ = 1150 nm and a broad enhancement over the spectral range from 800 to 1200 nm was achieved.

Fig. 8
Fig. 8

J-V characteristic curve for solar cells before and after the integration with Au NPs of the mean diameter of 61 nm. All the photovoltaic characteristics were enhanced in this cell, namely, the overall energy conversion efficiency η (1.97%), Jsc (0.93%), FF (0.93%), and Voc (0.096%).

Tables (1)

Tables Icon

Table 1 I-V Characteristic Parameters of the mc-Si Solar Cells Before and After Integration with Au NPs of Three Different Diameters

Metrics