Abstract

Here we present our experimental results in synthesizing Au-Ag bimetallic nanoalloys with tunable localized surface plasmon resonance frequency through nanosecond laser-induced heating in the presence of polyvinyl alcohol as a reducing and capping agent via three different procedures: (i) Mixture of HAuCl4 and AgNO3 precursors, (ii) Mixture of Au nanoparticles (NPs) and AgNO3 precursor and (iii) Mixture of both Au and Ag NPs. Presence of single absorption band and direct dependence of the Au/Ag molar ratio to the shift of the absorption peak and lack of core-shell structure in Transmission Electron Microscope images confirms that the formed NPs are homogeneous alloys.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Schmid, Clusters and Colloids: From Theory to Application (VCH, Weinheim, 1994).
  2. G. Schmid, H. West, H. Mehles, and A. Lehnert, “Hydrosilation reactions catalyzed by supported bimetallic colloids,” Inorg. Chem.36(5), 891–895 (1997).
    [CrossRef]
  3. G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
    [CrossRef]
  4. M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science281(5383), 1647–1650 (1998).
    [CrossRef] [PubMed]
  5. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir22(1), 32–41 (2006).
    [CrossRef] [PubMed]
  6. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  7. L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
    [CrossRef] [PubMed]
  8. A.-Q. Wang, C.-M. Chang, and C.-Y. Mou, “Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation,” J. Phys. Chem. B109(40), 18860–18867 (2005).
    [CrossRef] [PubMed]
  9. A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
    [CrossRef]
  10. J. P. Wilcoxon and B. L. Abrams, “Synthesis, structure and properties of metal nanoclusters,” Chem. Soc. Rev.35(11), 1162–1194 (2006).
    [CrossRef] [PubMed]
  11. M. P. Mallin and C. J. Murphy, “Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles,” Nano Lett.2(11), 1235–1237 (2002).
    [CrossRef]
  12. X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
    [CrossRef] [PubMed]
  13. Y.-H. Chen, Y.-H. Tseng, and C.-S. Yeh, “Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles,” J. Mater. Chem.12(5), 1419–1422 (2002).
    [CrossRef]
  14. N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
    [CrossRef] [PubMed]
  15. M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
    [CrossRef] [PubMed]
  16. H. Han, Y. Fang, Z. Li, and H. Xu, “Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation,” Appl. Phys. Lett.92(2), 023116 (2008).
    [CrossRef]
  17. F. Hajiesmaeilbaigi and A. Motamedi, “Synthesis of Au/Ag alloy nanoparticles by Nd:YAG laser irradiation,” Laser Phys. Lett.4(2), 133–137 (2007).
    [CrossRef]
  18. F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
    [CrossRef]
  19. M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
    [CrossRef]
  20. F. Gao, Q. Lu, and S. Komarneni, “Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions,” Chem. Mater.17(4), 856–860 (2005).
    [CrossRef]
  21. G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Lett.3(4), 519–522 (2003).
    [CrossRef]
  22. J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
    [CrossRef]
  23. Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
    [CrossRef]
  24. Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
    [CrossRef] [PubMed]
  25. S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater.23, 4098–4101 (2011).
  26. L. Xu, L. S. Tan, and M. H. Hong, “Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing,” Appl. Opt.50(31), G74–G79 (2011).
    [CrossRef] [PubMed]
  27. K. L. N. Deepak, R. Kuladeep, K. Shadak Alee, and D. Narayana Rao, “Synthesis of silver nanoparticles in poly (vinyl alcohol) matrix in solution and thin films through laser irradiation,” J. Nanosci. Nanotechnol.11, 1–8 (2011).
    [PubMed]
  28. S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
    [CrossRef]
  29. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106(32), 7729–7744 (2002).
    [CrossRef]
  30. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
    [CrossRef] [PubMed]
  31. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
    [CrossRef]
  32. C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Au core Ag shell nanorods and characterization of their surface Plasmon resonances,” J. Phys. Chem. B105(33), 7871–7873 (2001).
    [CrossRef]
  33. J. Zhu, “Theoritical study of the optical absorption properties of Au-Ag bimetallic nanospheres,” Physica E27(1-2), 296–301 (2005).
    [CrossRef]
  34. F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of Gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
    [CrossRef]
  35. P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond dynamics of silver nanoclusters: Photoejection of electrons and fragmentation,” J. Phys. Chem. B102(17), 3123–3128 (1998).
    [CrossRef]
  36. H. Kurita, A. Takami, and S. Koda, “Size reduction of gold particles in aqueous solution by pulsed laser irradiation,” Appl. Phys. Lett.72(7), 789–791 (1998).
    [CrossRef]

2011 (5)

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
[CrossRef] [PubMed]

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater.23, 4098–4101 (2011).

L. Xu, L. S. Tan, and M. H. Hong, “Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing,” Appl. Opt.50(31), G74–G79 (2011).
[CrossRef] [PubMed]

K. L. N. Deepak, R. Kuladeep, K. Shadak Alee, and D. Narayana Rao, “Synthesis of silver nanoparticles in poly (vinyl alcohol) matrix in solution and thin films through laser irradiation,” J. Nanosci. Nanotechnol.11, 1–8 (2011).
[PubMed]

2008 (2)

H. Han, Y. Fang, Z. Li, and H. Xu, “Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation,” Appl. Phys. Lett.92(2), 023116 (2008).
[CrossRef]

X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
[CrossRef] [PubMed]

2007 (3)

F. Hajiesmaeilbaigi and A. Motamedi, “Synthesis of Au/Ag alloy nanoparticles by Nd:YAG laser irradiation,” Laser Phys. Lett.4(2), 133–137 (2007).
[CrossRef]

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
[CrossRef]

2006 (6)

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
[CrossRef] [PubMed]

J. P. Wilcoxon and B. L. Abrams, “Synthesis, structure and properties of metal nanoclusters,” Chem. Soc. Rev.35(11), 1162–1194 (2006).
[CrossRef] [PubMed]

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir22(1), 32–41 (2006).
[CrossRef] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
[CrossRef]

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

2005 (5)

F. Gao, Q. Lu, and S. Komarneni, “Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions,” Chem. Mater.17(4), 856–860 (2005).
[CrossRef]

A.-Q. Wang, C.-M. Chang, and C.-Y. Mou, “Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation,” J. Phys. Chem. B109(40), 18860–18867 (2005).
[CrossRef] [PubMed]

A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
[CrossRef]

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
[CrossRef]

J. Zhu, “Theoritical study of the optical absorption properties of Au-Ag bimetallic nanospheres,” Physica E27(1-2), 296–301 (2005).
[CrossRef]

2004 (2)

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

2003 (1)

G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Lett.3(4), 519–522 (2003).
[CrossRef]

2002 (3)

Y.-H. Chen, Y.-H. Tseng, and C.-S. Yeh, “Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles,” J. Mater. Chem.12(5), 1419–1422 (2002).
[CrossRef]

M. P. Mallin and C. J. Murphy, “Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles,” Nano Lett.2(11), 1235–1237 (2002).
[CrossRef]

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106(32), 7729–7744 (2002).
[CrossRef]

2001 (3)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
[CrossRef] [PubMed]

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Au core Ag shell nanorods and characterization of their surface Plasmon resonances,” J. Phys. Chem. B105(33), 7871–7873 (2001).
[CrossRef]

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of Gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

1999 (1)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

1998 (3)

P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond dynamics of silver nanoclusters: Photoejection of electrons and fragmentation,” J. Phys. Chem. B102(17), 3123–3128 (1998).
[CrossRef]

H. Kurita, A. Takami, and S. Koda, “Size reduction of gold particles in aqueous solution by pulsed laser irradiation,” Appl. Phys. Lett.72(7), 789–791 (1998).
[CrossRef]

M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science281(5383), 1647–1650 (1998).
[CrossRef] [PubMed]

1997 (1)

G. Schmid, H. West, H. Mehles, and A. Lehnert, “Hydrosilation reactions catalyzed by supported bimetallic colloids,” Inorg. Chem.36(5), 891–895 (1997).
[CrossRef]

Abrams, B. L.

J. P. Wilcoxon and B. L. Abrams, “Synthesis, structure and properties of metal nanoclusters,” Chem. Soc. Rev.35(11), 1162–1194 (2006).
[CrossRef] [PubMed]

Ah, C. S.

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Au core Ag shell nanorods and characterization of their surface Plasmon resonances,” J. Phys. Chem. B105(33), 7871–7873 (2001).
[CrossRef]

Bansal, C.

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

Boothroyd, C.

Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
[CrossRef]

Cao, Y. C.

G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Lett.3(4), 519–522 (2003).
[CrossRef]

Chang, C.-M.

A.-Q. Wang, C.-M. Chang, and C.-Y. Mou, “Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation,” J. Phys. Chem. B109(40), 18860–18867 (2005).
[CrossRef] [PubMed]

Chen, G.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater.23, 4098–4101 (2011).

Chen, Y.-H.

Y.-H. Chen, Y.-H. Tseng, and C.-S. Yeh, “Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles,” J. Mater. Chem.12(5), 1419–1422 (2002).
[CrossRef]

Cheon, J.

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

Choi, J.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Deepak, K. L. N.

K. L. N. Deepak, R. Kuladeep, K. Shadak Alee, and D. Narayana Rao, “Synthesis of silver nanoparticles in poly (vinyl alcohol) matrix in solution and thin films through laser irradiation,” J. Nanosci. Nanotechnol.11, 1–8 (2011).
[PubMed]

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
[CrossRef] [PubMed]

Engelhard, M. H.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Fallah, H. R.

F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
[CrossRef]

Fang, Y.

H. Han, Y. Fang, Z. Li, and H. Xu, “Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation,” Appl. Phys. Lett.92(2), 023116 (2008).
[CrossRef]

Flumiani, M.

P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond dynamics of silver nanoclusters: Photoejection of electrons and fragmentation,” J. Phys. Chem. B102(17), 3123–3128 (1998).
[CrossRef]

Gao, F.

F. Gao, Q. Lu, and S. Komarneni, “Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions,” Chem. Mater.17(4), 856–860 (2005).
[CrossRef]

Goodman, D. W.

M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science281(5383), 1647–1650 (1998).
[CrossRef] [PubMed]

Hajiesmaeilbaigi, F.

F. Hajiesmaeilbaigi and A. Motamedi, “Synthesis of Au/Ag alloy nanoparticles by Nd:YAG laser irradiation,” Laser Phys. Lett.4(2), 133–137 (2007).
[CrossRef]

F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
[CrossRef]

Han, H.

H. Han, Y. Fang, Z. Li, and H. Xu, “Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation,” Appl. Phys. Lett.92(2), 023116 (2008).
[CrossRef]

Harsha, S. S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
[CrossRef]

Hartland, G. V.

P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond dynamics of silver nanoclusters: Photoejection of electrons and fragmentation,” J. Phys. Chem. B102(17), 3123–3128 (1998).
[CrossRef]

Hassan, S. A.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Hikino, S.

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Hong, M. H.

Hong, S. D.

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Au core Ag shell nanorods and characterization of their surface Plasmon resonances,” J. Phys. Chem. B105(33), 7871–7873 (2001).
[CrossRef]

Hoseinkhani, S.

F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
[CrossRef]

Jang, D.-J.

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Au core Ag shell nanorods and characterization of their surface Plasmon resonances,” J. Phys. Chem. B105(33), 7871–7873 (2001).
[CrossRef]

Jin, R.

G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Lett.3(4), 519–522 (2003).
[CrossRef]

Johnston-Peck, A. C.

M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
[CrossRef] [PubMed]

Jun, Y.-w.

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

Kamat, P. V.

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106(32), 7729–7744 (2002).
[CrossRef]

P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond dynamics of silver nanoclusters: Photoejection of electrons and fragmentation,” J. Phys. Chem. B102(17), 3123–3128 (1998).
[CrossRef]

Kariuki, N. N.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Kim, M. G.

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

Kimura, K.

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Kleinermanns, K.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
[CrossRef] [PubMed]

Koda, S.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

H. Kurita, A. Takami, and S. Koda, “Size reduction of gold particles in aqueous solution by pulsed laser irradiation,” Appl. Phys. Lett.72(7), 789–791 (1998).
[CrossRef]

Kohno, J.-y.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of Gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Komarneni, S.

F. Gao, Q. Lu, and S. Komarneni, “Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions,” Chem. Mater.17(4), 856–860 (2005).
[CrossRef]

Kondow, T.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of Gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Kuladeep, R.

K. L. N. Deepak, R. Kuladeep, K. Shadak Alee, and D. Narayana Rao, “Synthesis of silver nanoparticles in poly (vinyl alcohol) matrix in solution and thin films through laser irradiation,” J. Nanosci. Nanotechnol.11, 1–8 (2011).
[PubMed]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

H. Kurita, A. Takami, and S. Koda, “Size reduction of gold particles in aqueous solution by pulsed laser irradiation,” Appl. Phys. Lett.72(7), 789–791 (1998).
[CrossRef]

Lai, X.

M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science281(5383), 1647–1650 (1998).
[CrossRef] [PubMed]

Lee, J. S.

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

Lee, J. Y.

Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
[CrossRef]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Lee, W.-r.

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

Lehnert, A.

G. Schmid, H. West, H. Mehles, and A. Lehnert, “Hydrosilation reactions catalyzed by supported bimetallic colloids,” Inorg. Chem.36(5), 891–895 (1997).
[CrossRef]

Li, Z.

H. Han, Y. Fang, Z. Li, and H. Xu, “Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation,” Appl. Phys. Lett.92(2), 023116 (2008).
[CrossRef]

Lim, S.

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Lin, S. D.

A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
[CrossRef]

Lin, T.-S.

A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
[CrossRef]

Lin, Y.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Liu, J.-H.

A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
[CrossRef]

Liu, S.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater.23, 4098–4101 (2011).

Liu, X.

X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir22(1), 32–41 (2006).
[CrossRef] [PubMed]

Lu, Q.

F. Gao, Q. Lu, and S. Komarneni, “Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions,” Chem. Mater.17(4), 856–860 (2005).
[CrossRef]

Lu, S.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Luo, J.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Mafuné, F.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of Gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Mallin, M. P.

M. P. Mallin and C. J. Murphy, “Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles,” Nano Lett.2(11), 1235–1237 (2002).
[CrossRef]

Maye, M. M.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Mehles, H.

G. Schmid, H. West, H. Mehles, and A. Lehnert, “Hydrosilation reactions catalyzed by supported bimetallic colloids,” Inorg. Chem.36(5), 891–895 (1997).
[CrossRef]

Menard, T.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Métraux, G. S.

G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Lett.3(4), 519–522 (2003).
[CrossRef]

Mirkin, C. A.

G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Lett.3(4), 519–522 (2003).
[CrossRef]

Miyamae, N.

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Mohammadalipour, A.

F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
[CrossRef]

Motamedi, A.

F. Hajiesmaeilbaigi and A. Motamedi, “Synthesis of Au/Ag alloy nanoparticles by Nd:YAG laser irradiation,” Laser Phys. Lett.4(2), 133–137 (2007).
[CrossRef]

Mou, C.-Y.

X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
[CrossRef] [PubMed]

A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
[CrossRef]

A.-Q. Wang, C.-M. Chang, and C.-Y. Mou, “Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation,” J. Phys. Chem. B109(40), 18860–18867 (2005).
[CrossRef] [PubMed]

Murphy, C. J.

M. P. Mallin and C. J. Murphy, “Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles,” Nano Lett.2(11), 1235–1237 (2002).
[CrossRef]

Narayana Rao, D.

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

K. L. N. Deepak, R. Kuladeep, K. Shadak Alee, and D. Narayana Rao, “Synthesis of silver nanoparticles in poly (vinyl alcohol) matrix in solution and thin films through laser irradiation,” J. Nanosci. Nanotechnol.11, 1–8 (2011).
[PubMed]

Naslund, H. R.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Nishio, M.

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Oldenburg, A. L.

M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
[CrossRef] [PubMed]

Park, J.-I.

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

Peng, Z.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
[CrossRef] [PubMed]

Porel, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
[CrossRef]

Prasad, P. N.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater.23, 4098–4101 (2011).

Radhakrishnan, T. P.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
[CrossRef]

Raju, B.

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

Rao, D. N.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
[CrossRef]

Rendeng, Q.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Sabbaghzadeh, J.

F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
[CrossRef]

Satyavathi, R.

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

Schadt, M.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Schmid, G.

G. Schmid, H. West, H. Mehles, and A. Lehnert, “Hydrosilation reactions catalyzed by supported bimetallic colloids,” Inorg. Chem.36(5), 891–895 (1997).
[CrossRef]

Shadak Alee, K.

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

K. L. N. Deepak, R. Kuladeep, K. Shadak Alee, and D. Narayana Rao, “Synthesis of silver nanoparticles in poly (vinyl alcohol) matrix in solution and thin films through laser irradiation,” J. Nanosci. Nanotechnol.11, 1–8 (2011).
[PubMed]

Shi, X.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Shore, M. S.

M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
[CrossRef] [PubMed]

Singh, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
[CrossRef]

Spliethoff, B.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
[CrossRef] [PubMed]

Swihart, M. T.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater.23, 4098–4101 (2011).

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

H. Kurita, A. Takami, and S. Koda, “Size reduction of gold particles in aqueous solution by pulsed laser irradiation,” Appl. Phys. Lett.72(7), 789–791 (1998).
[CrossRef]

Takeda, Y.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of Gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Tan, L. S.

Tesche, B.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
[CrossRef] [PubMed]

Tracy, J. B.

M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
[CrossRef] [PubMed]

Tseng, Y.-H.

Y.-H. Chen, Y.-H. Tseng, and C.-S. Yeh, “Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles,” J. Mater. Chem.12(5), 1419–1422 (2002).
[CrossRef]

Tsuji, M.

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Upender, G.

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

Valden, M.

M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science281(5383), 1647–1650 (1998).
[CrossRef] [PubMed]

Walther, T.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
[CrossRef] [PubMed]

Wang, A.

X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
[CrossRef] [PubMed]

Wang, A.-Q.

A.-Q. Wang, C.-M. Chang, and C.-Y. Mou, “Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation,” J. Phys. Chem. B109(40), 18860–18867 (2005).
[CrossRef] [PubMed]

A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
[CrossRef]

Wang, C.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Wang, G. R.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Wang, J.

M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
[CrossRef] [PubMed]

Wang, L.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Wang, X.

X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
[CrossRef] [PubMed]

West, H.

G. Schmid, H. West, H. Mehles, and A. Lehnert, “Hydrosilation reactions catalyzed by supported bimetallic colloids,” Inorg. Chem.36(5), 891–895 (1997).
[CrossRef]

Wilcoxon, J. P.

J. P. Wilcoxon and B. L. Abrams, “Synthesis, structure and properties of metal nanoclusters,” Chem. Soc. Rev.35(11), 1162–1194 (2006).
[CrossRef] [PubMed]

Xu, H.

H. Han, Y. Fang, Z. Li, and H. Xu, “Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation,” Appl. Phys. Lett.92(2), 023116 (2008).
[CrossRef]

Xu, L.

Yang, J.

Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
[CrossRef]

Yeh, C.-S.

Y.-H. Chen, Y.-H. Tseng, and C.-S. Yeh, “Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles,” J. Mater. Chem.12(5), 1419–1422 (2002).
[CrossRef]

Zhang, J.

Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
[CrossRef]

Zhang, Q.

Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
[CrossRef]

Zhang, T.

X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
[CrossRef] [PubMed]

Zhang, X.

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Zhong, C. J.

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Zhong, C.-J.

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, “Theoritical study of the optical absorption properties of Au-Ag bimetallic nanospheres,” Physica E27(1-2), 296–301 (2005).
[CrossRef]

Acc. Chem. Res. (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Han, Y. Fang, Z. Li, and H. Xu, “Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation,” Appl. Phys. Lett.92(2), 023116 (2008).
[CrossRef]

H. Kurita, A. Takami, and S. Koda, “Size reduction of gold particles in aqueous solution by pulsed laser irradiation,” Appl. Phys. Lett.72(7), 789–791 (1998).
[CrossRef]

Chem. Commun. (Camb.) (1)

X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, “Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation,” Chem. Commun. (Camb.) (27), 3187–3189 (2008).
[CrossRef] [PubMed]

Chem. Mater. (3)

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-Embedded polymer: In situ synthesis, Free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater.17(1), 9–12 (2005).
[CrossRef]

F. Gao, Q. Lu, and S. Komarneni, “Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions,” Chem. Mater.17(4), 856–860 (2005).
[CrossRef]

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater.23, 4098–4101 (2011).

Chem. Phys. Lett. (1)

G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao, and C. Bansal, “Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules,” Chem. Phys. Lett.511(4-6), 309–314 (2011).
[CrossRef]

Chem. Soc. Rev. (1)

J. P. Wilcoxon and B. L. Abrams, “Synthesis, structure and properties of metal nanoclusters,” Chem. Soc. Rev.35(11), 1162–1194 (2006).
[CrossRef] [PubMed]

Cryst. Growth Des. (1)

M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, “Crystal structures and growth mechanisms of Au/Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst. Growth Des.6(8), 1801–1807 (2006).
[CrossRef]

Inorg. Chem. (1)

G. Schmid, H. West, H. Mehles, and A. Lehnert, “Hydrosilation reactions catalyzed by supported bimetallic colloids,” Inorg. Chem.36(5), 891–895 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Wang, X. Shi, N. N. Kariuki, M. Schadt, G. R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong, “Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties,” J. Am. Chem. Soc.129(7), 2161–2170 (2007).
[CrossRef] [PubMed]

J. Catal. (1)

A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, and C.-Y. Mou, “A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization,” J. Catal.233(1), 186–197 (2005).
[CrossRef]

J. Mater. Chem. (1)

Y.-H. Chen, Y.-H. Tseng, and C.-S. Yeh, “Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles,” J. Mater. Chem.12(5), 1419–1422 (2002).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

K. L. N. Deepak, R. Kuladeep, K. Shadak Alee, and D. Narayana Rao, “Synthesis of silver nanoparticles in poly (vinyl alcohol) matrix in solution and thin films through laser irradiation,” J. Nanosci. Nanotechnol.11, 1–8 (2011).
[PubMed]

J. Phys. Chem. B (8)

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106(32), 7729–7744 (2002).
[CrossRef]

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

C. S. Ah, S. D. Hong, and D.-J. Jang, “Preparation of Au core Ag shell nanorods and characterization of their surface Plasmon resonances,” J. Phys. Chem. B105(33), 7871–7873 (2001).
[CrossRef]

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, and K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B110(6), 2549–2554 (2006).
[CrossRef] [PubMed]

A.-Q. Wang, C.-M. Chang, and C.-Y. Mou, “Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation,” J. Phys. Chem. B109(40), 18860–18867 (2005).
[CrossRef] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of Gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond dynamics of silver nanoclusters: Photoejection of electrons and fragmentation,” J. Phys. Chem. B102(17), 3123–3128 (1998).
[CrossRef]

Langmuir (2)

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir22(1), 32–41 (2006).
[CrossRef] [PubMed]

N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, “Composition-controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir20(25), 11240–11246 (2004).
[CrossRef] [PubMed]

Laser Phys. Lett. (2)

F. Hajiesmaeilbaigi and A. Motamedi, “Synthesis of Au/Ag alloy nanoparticles by Nd:YAG laser irradiation,” Laser Phys. Lett.4(2), 133–137 (2007).
[CrossRef]

F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, and H. R. Fallah, “Preparation of silver nanoparticles by laser ablation and fragmentation in pure water,” Laser Phys. Lett.3(5), 252–256 (2006).
[CrossRef]

Nano Lett. (2)

M. P. Mallin and C. J. Murphy, “Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles,” Nano Lett.2(11), 1235–1237 (2002).
[CrossRef]

G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Lett.3(4), 519–522 (2003).
[CrossRef]

Nanoalloys. J. Am. Chem. Soc. (1)

J.-I. Park, M. G. Kim, Y.-w. Jun, J. S. Lee, W.-r. Lee, and J. Cheon, “Characterization of superparamagnetic ‘Core-Shell’ nanoparticles and monitoring their anisotropic phase transition to ferromagnetic ‘Solid Solution’,” Nanoalloys. J. Am. Chem. Soc.126(29), 9072–9078 (2004).
[CrossRef]

Nanotechnology (1)

Q. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, and J. Zhang, “Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions,” Nanotechnology18(24), 245605 (2007).
[CrossRef]

Physica E (1)

J. Zhu, “Theoritical study of the optical absorption properties of Au-Ag bimetallic nanospheres,” Physica E27(1-2), 296–301 (2005).
[CrossRef]

Science (1)

M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science281(5383), 1647–1650 (1998).
[CrossRef] [PubMed]

Small (1)

M. S. Shore, J. Wang, A. C. Johnston-Peck, A. L. Oldenburg, and J. B. Tracy, “Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles,” Small7(2), 230–234 (2011).
[CrossRef] [PubMed]

Other (1)

G. Schmid, Clusters and Colloids: From Theory to Application (VCH, Weinheim, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

UV-Vis absorption spectra of (a) concentration-1, (b) concentration-3 of bimetallic alloy NPs synthesized with different Au-Ag molar ratios and (c) Tunable characteristics of LSPR band of Au-Ag alloy NPs of all the three concentrations under study

Fig. 2
Fig. 2

UV-Vis absorption spectra of Au-Ag alloy of Au0.5Ag0.5 composition corresponding to concentration-3 at 185mJ/cm2 fluence for 10, 20 and 30 minutes exposure, 139mJ/cm2 and 99 mJ/cm2 fluencies for 20 min duration of exposure under 532 nm laser irradiation.

Fig. 3
Fig. 3

UV-Vis absorption spectra of a solution of 0.5Au0.5Ag alloy NPs compared to a physical mixture of pure Au and Ag monometallic NPs.

Fig. 4
Fig. 4

(a) corresponds to TEM image of 0.5Au-0.5Ag alloy nanoparticles of concentration-2 under ns laser irradiation at 185mJ/cm2 and (b) Histogram of alloy nanoparticles under study.

Fig. 5
Fig. 5

(a) UV-Vis absorption spectra of formation of Au-Ag alloy NPs from a mixed solution of Au colloids and Ag precursor with 1:1 molar ratio and (b)Tunable characteristics of LSPR band of Au-Ag alloy NPs from a mixed solution of Au colloids and Ag precursor with 1:1, 1:2 and 2:1 molar ratios before and after 532 nm laser irradiation.

Fig. 6
Fig. 6

(a) corresponds to TEM image and (b) Histogram of Au-Ag alloy nanoparticles obtained after irradiation of mixture of Au NPs and Ag precursor in 1:1 ratio for 40 minutes duration of exposure at 185 mJ/cm2.

Fig. 7
Fig. 7

UV-Vis absorption spectra of formation of Au-Ag alloy NPs from a mixture of both Au and Ag colloids in 1:1 molar ratio upon 532 nm laser irradiation.

Fig. 8
Fig. 8

(a) corresponds to TEM image and (b) Histogram of alloy nanoparticles obtained by irradiating mixture of individual Au and Ag NPs for 30 min duration of exposure at 185 mJ/cm2.

Tables (1)

Tables Icon

Table 1 Au-Ag Precursor Solutions with Different Molar Ratios

Metrics