W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B18, 524–533 (2001).

[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).

[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).

[CrossRef]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).

[CrossRef]

J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36, 864–866 (2011).

[CrossRef]
[PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).

[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).

[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).

[CrossRef]

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).

[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).

[CrossRef]

J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36, 864–866 (2011).

[CrossRef]
[PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).

[CrossRef]

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).

[CrossRef]

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).

[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).

[CrossRef]

R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).

[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).

[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).

[CrossRef]

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).

[CrossRef]

H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).

[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B18, 524–533 (2001).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).

[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).

[CrossRef]

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).

[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).

[CrossRef]

D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).

[CrossRef]

D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).

[CrossRef]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).

[CrossRef]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).

[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).

[CrossRef]

R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).

[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).

[CrossRef]

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).

[CrossRef]

W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B18, 524–533 (2001).

[CrossRef]

R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascacded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B15, 2255–2268 (1998).

[CrossRef]

S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B8, 797–804 (1991).

[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).

[CrossRef]

D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).

[CrossRef]

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).

[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).

[CrossRef]

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).

[CrossRef]

H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.

M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.