Abstract

Efficiency measurements of second-harmonic generation in quasi-phase-matched lithium niobate waveguides yield a value for the nonlinear optical second-order susceptibility tensor element χzzz(2)(2ω;ω,ω)=d33=(20.6±2.1)pmV in periodically poled, titanium-indiffused waveguides in congruent composition lithium niobate at room temperature for a fundamental wavelength of 1.52 μm. A special fringe structure in the tuning curves was observed and explained as an unique feature in quasi-phase-matched parametric processes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
    [CrossRef]
  2. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
    [CrossRef]
  3. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).
    [CrossRef]
  4. H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.
  5. M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.
  6. I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.
  7. R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).
    [CrossRef]
  8. R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
    [CrossRef]
  9. W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B18, 524–533 (2001).
    [CrossRef]
  10. D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).
    [CrossRef]
  11. G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).
    [CrossRef]
  12. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).
    [CrossRef]
  13. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
    [CrossRef]
  14. S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B8, 797–804 (1991).
    [CrossRef]
  15. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36, 864–866 (2011).
    [CrossRef] [PubMed]
  16. R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascacded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B15, 2255–2268 (1998).
    [CrossRef]
  17. G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).
    [CrossRef]

2011 (1)

2008 (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

2007 (1)

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).
[CrossRef]

2006 (1)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
[CrossRef]

2003 (1)

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
[CrossRef]

2001 (1)

1998 (1)

1997 (2)

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).
[CrossRef]

D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).
[CrossRef]

1991 (1)

1988 (1)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).
[CrossRef]

1987 (1)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

1971 (1)

R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).
[CrossRef]

Alford, W. J.

Arai, A.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Arvidsson, G.

Baek, Y.

Bava, G. P.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).
[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).
[CrossRef]

Berth, G.

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).
[CrossRef]

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Chang, D.

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

Fejer, M. M.

J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36, 864–866 (2011).
[CrossRef] [PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
[CrossRef]

Furukawa, Y.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Hayase, K.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Helmfrid, S.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Ito, R.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).
[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Kitamoto, A.

Klein, R. S.

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
[CrossRef]

Kondo, T.

Kugel, G. E.

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
[CrossRef]

Kumar, S.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
[CrossRef]

Langrock, C.

J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36, 864–866 (2011).
[CrossRef] [PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

Maillard, A.

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
[CrossRef]

McGeehan, J. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
[CrossRef]

Miller, R. C.

R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).
[CrossRef]

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Montrosset, I.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).
[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).
[CrossRef]

Nakajima, S.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Neduka, A.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Nordland, W. A.

R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).
[CrossRef]

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Pelc, J. S.

Péter, A.

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
[CrossRef]

Phillips, C. R.

Polgár, K.

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
[CrossRef]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).
[CrossRef]

Rabin, H.

H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Schiek, R.

Schubert, M.

M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.

Shirane, M.

Shoji, I.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).
[CrossRef]

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Smith, A. V.

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).
[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).
[CrossRef]

Stegeman, G. I.

Strake, E.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).
[CrossRef]

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).
[CrossRef]

Takeda, M.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Tang, C. L.

H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.

Ue, T.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Wilhelmi, B.

M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.

Willner, A. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
[CrossRef]

Xue, D.

D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).
[CrossRef]

Zhang, S.

D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).
[CrossRef]

Zrenner, A.

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).
[CrossRef]

Ferroelectrics (1)

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987).
[CrossRef]

J. Appl. Phys. (1)

R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971).
[CrossRef]

J. Lightw. Technol. (2)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys.: Condens. Mat. (1)

D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003).
[CrossRef]

Opt. Photon. News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008).
[CrossRef]

Opt. Quant. Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

Other (3)

H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.

M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

d33 in LiNbO3 at room temperature from Ref. [3] and from calculations in Ref. [10] compared to the measurement at 1.52 μm from this work. The error for the older measurement was estimated to be better than 10%. The most probable 5% error bars are shown.

Fig. 2
Fig. 2

Measured FW and SH TM00 mode-intensity scans of a 6-μm-wide waveguide at the output and input facet (for forward and backward propagation) in comparison with calculated mode profiles, λ = 1.52μm and λ = 0.76μm.

Fig. 3
Fig. 3

FW waveguide throughput including the end-facet transmittances, the input-mode overlap and the waveguide loss itself; red line: throughput after Fourier filtering.

Fig. 4
Fig. 4

(a) SH output just before the waveguide end; black: backward orientation, red: forward orientation, room temperature. (b) Detail of the backward measurement; black: before smoothing, orange: after smoothing. The FW input power was ≈ 0.23 mW. The waveguide length is L = 1180.44Λ = 19.3592 mm.

Fig. 5
Fig. 5

SH tuning curves from 6-μm-wide waveguides with different lengths: (a) L = 1179.5Λ, (b) L = 1179.75Λ and (c) L = 1179.9Λ (no backward measurement available); black: backward orientation, red: forward orientation, room temperature, the FW input power was ≈ 0.23 mW.

Fig. 6
Fig. 6

Measured and simulated SH efficiency: (a) backward, 23.08°C, and (b) forward orientation, 22.88°C.

Fig. 7
Fig. 7

QPM grating in the investigated waveguide: (a) beginning of the crystal, (b) end of the crystal.

Fig. 8
Fig. 8

Histogram of 1100 inverted and uninverted domain widths (bars), and fit to Gaussian normal distributions (red curves). The standard deviations are 0.853 and 0.815μm.

Fig. 9
Fig. 9

Comparison of measured and calculated data: (a) Absolute power tuning curve (SH power just before the waveguide output); forward orientation, 22.88°C, 0.228 mW FW input power. (b) Detail from the absolute power tuning curve in (a). (c) Detail of the normalized SH tuning curve with SH fringes from Fig. 6(a). (d) Absolute FW output power just after the waveguide output; backward orientation, 23.08°C, 0.228 mW FW input power. The input power is the FW power that is focused onto the waveguide input facet reduced by the 90.4% overlap between the gaussian beam and the waveguide mode.

Fig. 10
Fig. 10

Normalized measured SH tuning curve (in black, averaged in yellow) compared with the sinc-form of a simulated tuning curve of a reflection-free waveguide (in red); forward orientation, 22.88°C.

Tables (2)

Tables Icon

Table 1 Taylor Coefficients for FW and SH TM00 Mode-Index Series*

Tables Icon

Table 2 Relative Error of the Transmittance ΔT/T of a Combination of Diverse Optical Elements and Surfaces for FW and SH*

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ η η = Δ D SH D SH + Δ T SH T SH + 2 ( Δ D FW D FW + Δ T FW T FW ) = 12.5 % .
| Δ d 33 d 33 | = 1 2 [ Δ D SH D SH + Δ T SH T SH + 1 × Δ T FW WG T FW WG + 0.5 × Δ T SH WG T SH WG ] + + Δ D FW D FW + Δ T FW OE T FW OE + Δ K ( 2 ) K ( 2 ) = 9.75 % .
d 33 = χ z z z ( 2 ) ( 2 ω ; ω , ω ) = ( 20.6 ± 2.1 ) pm V .

Metrics