Abstract

In this work, we numerically investigate the nature of spectral shifts in antenna-enhanced hydrogen sensing geometries consisting of a gold bowtie antenna next to a palladium nanodisk. We find through extensive finite element (FEM) simulations that the hydrogen-induced spectral behavior of the system is governed by two competing effects: a small blueshift caused by dielectric function changes in the palladium and a much stronger redshift due to an expansion of the palladium lattice. Our findings enable the accurate numerical characterization and especially the optimization of sensitive antenna-enhanced hydrogen sensors. As a first application, we calculate the performance improvement of gap antennas compared to single cut-wire antenna elements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
    [CrossRef]
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  3. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
    [CrossRef] [PubMed]
  4. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
    [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  6. C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007).
    [CrossRef]
  7. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
    [CrossRef] [PubMed]
  8. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
    [CrossRef] [PubMed]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  10. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  11. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
    [CrossRef] [PubMed]
  12. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
    [CrossRef]
  13. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
    [CrossRef] [PubMed]
  14. W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
    [CrossRef]
  15. C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010).
    [CrossRef] [PubMed]
  16. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
    [CrossRef]
  17. D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
    [CrossRef] [PubMed]
  18. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
    [CrossRef] [PubMed]
  19. S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005).
    [CrossRef]
  20. E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009).
    [CrossRef] [PubMed]
  21. T. Flanagan and W. A. Oates, “The Palladium-Hydrogen System,” Annu. Rev. Mater. Res.21(1), 269–304 (1991).
    [CrossRef]
  22. M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011).
    [CrossRef] [PubMed]
  23. J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
    [CrossRef]
  24. F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
    [CrossRef] [PubMed]
  25. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  26. T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
    [CrossRef]
  27. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
    [CrossRef] [PubMed]
  28. ANSYS, Inc., High-frequency structure simulator (HFSS) (Canonsburg, Pennsylvania, U.S.)
  29. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  30. J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
    [CrossRef]

2011 (6)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011).
[CrossRef] [PubMed]

2010 (8)

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
[CrossRef] [PubMed]

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
[CrossRef]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
[CrossRef]

D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

2009 (3)

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009).
[CrossRef] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

2008 (2)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

2007 (4)

C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007).
[CrossRef]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

2006 (1)

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

2005 (2)

S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

1996 (1)

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

1991 (1)

T. Flanagan and W. A. Oates, “The Palladium-Hydrogen System,” Annu. Rev. Mater. Res.21(1), 269–304 (1991).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Adair, J.

S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005).
[CrossRef]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011).
[CrossRef] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Avila, J. I.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Azofeifa, D.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Becker, J.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
[CrossRef]

Bera, D.

C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007).
[CrossRef]

Cabrera, A. L.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Chang, S.-W.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
[CrossRef]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Cheng, M.

F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chuang, S. L.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
[CrossRef]

Clark, N.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Clemens, B. M.

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

Deb, S.

Delaunay, J.-J.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Deshpande, S.

C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007).
[CrossRef]

Dionne, J. A.

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011).
[CrossRef] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Drake, C.

C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Eklund, P.

S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005).
[CrossRef]

Endo, K.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Favre, M.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

Flanagan, T.

T. Flanagan and W. A. Oates, “The Palladium-Hydrogen System,” Annu. Rev. Mater. Res.21(1), 269–304 (1991).
[CrossRef]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Giessen, H.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
[CrossRef] [PubMed]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hemminger, J. C.

F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hohenester, U.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

Jakab, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Kasemo, B.

C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010).
[CrossRef] [PubMed]

E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Kishore, S.

S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

Kratzer, K.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Kung, S.-C.

F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
[CrossRef] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Langhammer, C.

C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010).
[CrossRef] [PubMed]

E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Larsson, E. M.

E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009).
[CrossRef] [PubMed]

Lederman, D.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Lee, S.-H.

Lin, T.-R.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
[CrossRef]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Lippitz, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Maeda, E.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Matelon, R. J.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Mikuriya, S.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Molnar, D.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Nau, D.

Nelson, J.

S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005).
[CrossRef]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Oates, W. A.

T. Flanagan and W. A. Oates, “The Palladium-Hydrogen System,” Annu. Rev. Mater. Res.21(1), 269–304 (1991).
[CrossRef]

Orzekowsky, R. B.

Penner, R. M.

F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Rojas, I.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Schuck, P. J.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
[CrossRef]

Schumacher, T.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Seal, S.

C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007).
[CrossRef]

Seidel, A.

Sönnichsen, C.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Suda, A.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Tang, M. L.

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011).
[CrossRef] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Trabol, R.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Trügler, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
[CrossRef]

Vargas, W.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Volkmann, U. G.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Yamada, I.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Yang, F.

F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Zhang, Z.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
[CrossRef]

Zhdanov, V. P.

C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010).
[CrossRef] [PubMed]

Zoric, I.

C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010).
[CrossRef] [PubMed]

E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, “Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires,” ACS Nano4(9), 5233–5244 (2010).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res. (1)

T. Flanagan and W. A. Oates, “The Palladium-Hydrogen System,” Annu. Rev. Mater. Res.21(1), 269–304 (1991).
[CrossRef]

Appl. Phys. Lett. (2)

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett.97(6), 063106 (2010).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Chem. Rev. (3)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Int. Mater. Rev. (1)

C. Drake, S. Deshpande, D. Bera, and S. Seal, “Metallic nanostructured materials based sensors,” Int. Mater. Rev.52(5), 289–317 (2007).
[CrossRef]

J. Alloy. Comp. (1)

S. Kishore, J. Nelson, J. Adair, and P. Eklund, “Hydrogen storage in spherical and platelet palladium nanoparticles,” J. Alloy. Comp.389(1-2), 234–242 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc.133(34), 13220–13223 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys.107(2), 023504 (2010).
[CrossRef]

Nano Lett. (4)

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

C. Langhammer, V. P. Zhdanov, I. Zorić, and B. Kasemo, “Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles,” Phys. Rev. Lett.104(13), 135502 (2010).
[CrossRef] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett.76(14), 2444–2447 (1996).
[CrossRef] [PubMed]

Plasmonics (1)

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics5(2), 161–167 (2010).
[CrossRef]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Other (1)

ANSYS, Inc., High-frequency structure simulator (HFSS) (Canonsburg, Pennsylvania, U.S.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the system under consideration. Pd disk with diameter d = 60 nm and height 40 nm situated next to a single gold bowtie antenna with side length a = 108 nm and height 40 nm.

Fig. 2
Fig. 2

Calculated scattering spectra for two values of the dielectric function of the Pd disk and scaling factor s. The gap size g before scaling is fixed at 5 nm. A change of the dielectric function from Pd to PdH blueshifts the antenna resonance by 3 nm whereas scaling the Pd disk with a factor of s = 1.04 causes a redshift of 13 nm. The superposition of these two effects yields a total redshift of 10 nm.

Fig. 3
Fig. 3

(a) Calculated enhancement of the electric field on a plane parallel to the substrate through the center of the bowtie. (b) Calculated single particle scattering spectra for different disk diameters and an initial gap size of g = 7 nm. Note the linear redshift of the antenna resonance with increasing scaling factor s.

Fig. 4
Fig. 4

Extracted spectral shifts due to the Pd/PdH transition and the growing of the Pd disk for different initial gap sizes g. Whereas the Pd/PdH-induced blueshift remains mostly constant at 3 nm, the magnitude of the scaling-induced redshift can be tuned by varying the gap size.

Fig. 5
Fig. 5

(a) Calculated enhancement of the electric field on a plane parallel to the substrate through the center of the double bowtie system. (b) Calculated scattering spectra for a double bowtie geometry with center Pd disk and a gap size of g = 5 nm. A significant enhancement of the total redshift can be observed.

Fig. 6
Fig. 6

(a) Calculated scattering spectra for a cut-wire antenna situated next to a Pd disk with a gap size of g = 5 nm. (b) Calculated scattering spectra for a double cut-wire geometry with center Pd disk and a gap size of g = 5 nm. A significant enhancement of the total redshift comparable to the double bowtie geometry can be observed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ s (Ω)= A det S s n ^ dA | S inc |

Metrics