Abstract

Irradiation of non-luminescent silica with polarized IR femtosecond laser light produced a significant amount of luminescent defects. We have investigated the properties of luminescence produced by the defects using UV-VUV excitation experiment depending on the relative orientation of the laser polarization and its scanning direction. Silicon Oxygen Deficient Center (SiODC) is identified. SiODC related luminescence is much stronger when the excitation polarization is parallel to the sample scanning direction and moved at low velocity, regardless of the writing polarization direction. This indicates that the creation of this anisotropic defect is oriented by the movement of the femtosecond laser beam.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of optical anisotropy in silica glass [Invited]

Yasuhiko Shimotsuma, Masaaki Sakakura, and Kiyotaka Miura
Opt. Mater. Express 1(5) 803-815 (2011)

Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky
Opt. Mater. Express 1(4) 711-723 (2011)

Temperature dependence of luminescence for different surface flaws in high purity silica glass

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot
Opt. Mater. Express 3(1) 1-10 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
    [Crossref]
  2. M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
    [Crossref]
  3. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
    [Crossref]
  4. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
    [Crossref]
  5. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [Crossref] [PubMed]
  6. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
    [Crossref]
  7. M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
    [Crossref] [PubMed]
  8. M. Lancry and B. Poumellec, “Multiphoton absorption processes & UV laser processing of silica-based materials,” Phys. Rep. (to be published).
  9. E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
    [Crossref]
  10. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  11. M. Lancry, B. Dufaure, and B. Poumellec, “Self-aligned porous nanoplanes photo-induced by IR femtosecond irradiation in silica glass,” XII Conference on the Physics of Non-Crystalline Solids, Foz do Iguaçu, Brazil (2009).
  12. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998–1008 (2011).
    [Crossref]
  13. M. Lancry, K. Cook, J. Canning, and B. Poumellec, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica,” in The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim (2011).
  14. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [Crossref]
  15. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref] [PubMed]
  16. H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
    [Crossref]
  17. J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
    [Crossref]
  18. W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
    [Crossref]
  19. W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “Fluorescence and Raman microscopy of waveguides fabricated using kHz and MHz repetition rate femtosecond lasers,” in Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS) (2006).
  20. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22(10), 2138–2143 (2005).
    [Crossref]
  21. A. Zoubir, M. Richardson, T. Cardinal, L. Canioni, A. Brocas, and L. Sarger, “Nonlinear optics of femtosecond laser-modified fused silica: applications to waveguide fabrication,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CFG2.
  22. H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. 191(1-4), 89–97 (2002).
    [Crossref]
  23. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
    [Crossref]
  24. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
    [Crossref]
  25. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
    [Crossref] [PubMed]
  26. M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
    [Crossref]
  27. L. Skuja, A. N. Streletsky, and A. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
    [Crossref]
  28. R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
    [Crossref]
  29. A. Trukhin and H. Fitting, “Investigation of optical and radiation properties of oxygen deficient silica glasses,” J. Non-Cryst. Solids 248(1), 49–64 (1999).
    [Crossref]
  30. A. Trukhin, B. Poumellec, and J. Garapon, “Study of the germanium luminescence in silica: from non-controlled impurity to germano-silicate core of telecommunication fiber preforms,” J. Non-Cryst. Solids 332(1-3), 153–165 (2003).
    [Crossref]
  31. H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett. 72(13), 2101–2104 (1994).
    [Crossref] [PubMed]
  32. N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).
  33. M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
    [Crossref]
  34. S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
    [Crossref]
  35. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
    [Crossref]
  36. M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
    [Crossref]
  37. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
    [Crossref]
  38. R. Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz,” J. Appl. Phys. 27(11), 1376–1381 (1956).
    [Crossref]
  39. H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
    [Crossref]
  40. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
    [Crossref]
  41. G. Pacchioni and G. Ierańo, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
    [Crossref]
  42. B. Stefanov and K. Raghavachari, “Photoabsorption of the peroxide linkage defect in silicate glasses,” J. Chem. Phys. 111(17), 8039–8042 (1999).
    [Crossref]
  43. L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
    [Crossref]
  44. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [Crossref]
  45. E. O'Reilly and J. Robertson, “Theory of defects in vitreous silicon dioxide,” Phys. Rev. B 27(6), 3780–3795 (1983).
    [Crossref]
  46. L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
    [Crossref]
  47. H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
    [Crossref] [PubMed]
  48. S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
    [Crossref]
  49. A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
    [Crossref]
  50. J. Garapon, “Etude théorique des défauts déficients en oxygène dans la silice pure ou dopée,” PhD thesis dissertation (Université de Paris 11, Orsay, France, 2001).
  51. M. Lancry, B. Poumellec, and M. Douay, “UV excited luminescence behavior in OH-flooded Ge-doped silica preform plates exposed to 193nm laser light,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA58.
  52. M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids 245(1-3), 196–202 (1999).
    [Crossref]
  53. B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids 239(1-3), 84–90 (1998).
    [Crossref]
  54. B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
    [Crossref]
  55. K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids 352(23-25), 2303–2306 (2006).
    [Crossref]
  56. K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
    [Crossref]
  57. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
    [Crossref]
  58. V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
    [Crossref]
  59. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, 1961).
  60. M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
    [Crossref]
  61. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
    [Crossref] [PubMed]
  62. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
    [Crossref] [PubMed]
  63. C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys. 95(2), 417–423 (2004).
    [Crossref]
  64. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [Crossref]
  65. M. Lancry, W. Yang, B. Poumellec, and B. Bourguignon, “Scan speed dependence of quill writing with ultrashort laser pulses in fused silica,” OSA topical meeting, Femtosecond Laser Microfabrication (2009).

2012 (1)

2011 (4)

2009 (2)

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[Crossref]

2008 (4)

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[Crossref] [PubMed]

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

2007 (1)

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

2006 (5)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids 352(23-25), 2303–2306 (2006).
[Crossref]

2005 (5)

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[Crossref]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
[Crossref] [PubMed]

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22(10), 2138–2143 (2005).
[Crossref]

2004 (4)

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys. 95(2), 417–423 (2004).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

2003 (5)

A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

A. Trukhin, B. Poumellec, and J. Garapon, “Study of the germanium luminescence in silica: from non-controlled impurity to germano-silicate core of telecommunication fiber preforms,” J. Non-Cryst. Solids 332(1-3), 153–165 (2003).
[Crossref]

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

2002 (3)

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. 191(1-4), 89–97 (2002).
[Crossref]

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
[Crossref]

2001 (2)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref] [PubMed]

2000 (1)

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

1999 (4)

B. Stefanov and K. Raghavachari, “Photoabsorption of the peroxide linkage defect in silicate glasses,” J. Chem. Phys. 111(17), 8039–8042 (1999).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids 245(1-3), 196–202 (1999).
[Crossref]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

A. Trukhin and H. Fitting, “Investigation of optical and radiation properties of oxygen deficient silica glasses,” J. Non-Cryst. Solids 248(1), 49–64 (1999).
[Crossref]

1998 (3)

G. Pacchioni and G. Ierańo, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids 239(1-3), 84–90 (1998).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

1997 (3)

B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

1995 (1)

V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
[Crossref]

1994 (2)

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett. 72(13), 2101–2104 (1994).
[Crossref] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

1992 (1)

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

1991 (1)

H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
[Crossref] [PubMed]

1987 (1)

R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
[Crossref]

1984 (1)

L. Skuja, A. N. Streletsky, and A. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

1983 (1)

E. O'Reilly and J. Robertson, “Theory of defects in vitreous silicon dioxide,” Phys. Rev. B 27(6), 3780–3795 (1983).
[Crossref]

1956 (1)

R. Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz,” J. Appl. Phys. 27(11), 1376–1381 (1956).
[Crossref]

Abe, Y.

H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
[Crossref] [PubMed]

Agnello, S.

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

Aiba, A.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

Ams, M.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Anedda, A.

A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
[Crossref]

Ani-Joseph, S.

Arai, A.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Arai, K.

H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
[Crossref] [PubMed]

Bagratashvili, V. N.

V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
[Crossref]

Bai, S.

C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys. 95(2), 417–423 (2004).
[Crossref]

Bennion, I.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Beresna, M.

Bernage, P.

B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
[Crossref]

Bhardwaj, V.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Boscaino, R.

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids 245(1-3), 196–202 (1999).
[Crossref]

Bovatsek, J.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Bricchi, E.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

Brisset, F.

Brocas, A.

Canioni, L.

Cannas, M.

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids 245(1-3), 196–202 (1999).
[Crossref]

Canning, J.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

Cannizzo, A.

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

Carbonaro, C.

A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
[Crossref]

Chahid-Erraji, A.

Chan, J.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Chan, J. W.

Cheng, H.

C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys. 95(2), 417–423 (2004).
[Crossref]

Chernov, P. V.

V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
[Crossref]

Clemente, F.

A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
[Crossref]

Cook, K.

Cordier, P.

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

Corkum, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Corpino, R.

A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
[Crossref]

Cortes, R.

B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
[Crossref]

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Daguzan, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

Dekker, P.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Depecker, C.

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

D'Oliveira, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

Döring, S.

Douay, M.

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[Crossref]

M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
[Crossref] [PubMed]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Dubov, M.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Eaton, S.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Fedorov, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
[Crossref]

Fitting, H.

A. Trukhin and H. Fitting, “Investigation of optical and radiation properties of oxygen deficient silica glasses,” J. Non-Cryst. Solids 248(1), 49–64 (1999).
[Crossref]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Garapon, J.

A. Trukhin, B. Poumellec, and J. Garapon, “Study of the germanium luminescence in silica: from non-controlled impurity to germano-silicate core of telecommunication fiber preforms,” J. Non-Cryst. Solids 332(1-3), 153–165 (2003).
[Crossref]

Gelardi, F.

M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids 245(1-3), 196–202 (1999).
[Crossref]

Gelardi, F. M.

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

Grandi, S.

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

Groothoff, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
[Crossref]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

Guenot, P.

B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids 239(1-3), 84–90 (1998).
[Crossref]

Guizard, S.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
[Crossref]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

Hama, Y.

R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
[Crossref]

Heinrich, M.

Herman, P.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Hirano, M.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids 352(23-25), 2303–2306 (2006).
[Crossref]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[Crossref]

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
[Crossref]

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. 191(1-4), 89–97 (2002).
[Crossref]

Hirao, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Hosono, H.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids 352(23-25), 2303–2306 (2006).
[Crossref]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[Crossref]

L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
[Crossref]

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. 191(1-4), 89–97 (2002).
[Crossref]

H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
[Crossref] [PubMed]

Huser, T.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref] [PubMed]

Ierano, G.

G. Pacchioni and G. Ierańo, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

Ikuta, Y.

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

Imagawa, H.

H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
[Crossref] [PubMed]

Imai, H.

H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
[Crossref] [PubMed]

Ishii, K.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

Ito, D.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett. 72(13), 2101–2104 (1994).
[Crossref] [PubMed]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Jia, F.

Juodkazis, S.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Kajihara, K.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids 352(23-25), 2303–2306 (2006).
[Crossref]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[Crossref]

L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
[Crossref]

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

Kamioka, H.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

Kawamura, K.

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. 191(1-4), 89–97 (2002).
[Crossref]

Kazansky, P.

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

Kazansky, P. G.

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Kinoshita, T.

L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
[Crossref]

Klappauf, B. G.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Krol, D.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Krol, D. M.

Krupa, J.

B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
[Crossref]

Lancry, M.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[Crossref]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[Crossref] [PubMed]

M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
[Crossref] [PubMed]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

M. Lancry and B. Poumellec, “Multiphoton absorption processes & UV laser processing of silica-based materials,” Phys. Rep. (to be published).

Leone, M.

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids 245(1-3), 196–202 (1999).
[Crossref]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Mao, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

Mao, X.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

Marshall, G.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Martin, P.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

Mashinsky, V.

B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids 239(1-3), 84–90 (1998).
[Crossref]

Matsuishi, S.

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. 191(1-4), 89–97 (2002).
[Crossref]

Matsuo, S.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Meynadier, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

Mezentsev, V.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Misawa, H.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Miura, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Miura, T.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

Miyake, Y.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

Morimoto, Y.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Nagasawa, K.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
[Crossref]

Niay, P.

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005).
[Crossref] [PubMed]

Nishii, J.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

Nishikawa, H.

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett. 72(13), 2101–2104 (1994).
[Crossref] [PubMed]

Nishikawa, N.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

Nolte, S.

Ohki, Y.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett. 72(13), 2101–2104 (1994).
[Crossref] [PubMed]

R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
[Crossref]

O'Reilly, E.

E. O'Reilly and J. Robertson, “Theory of defects in vitreous silicon dioxide,” Phys. Rev. B 27(6), 3780–3795 (1983).
[Crossref]

Pacchioni, G.

G. Pacchioni and G. Ierańo, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

Pakovich, A.

L. Skuja, A. N. Streletsky, and A. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Perdrix, M.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

Peschel, U.

Petite, G.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

Poulin, J. C.

Poumellec, B.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
[Crossref]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[Crossref]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[Crossref] [PubMed]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

A. Trukhin, B. Poumellec, and J. Garapon, “Study of the germanium luminescence in silica: from non-controlled impurity to germano-silicate core of telecommunication fiber preforms,” J. Non-Cryst. Solids 332(1-3), 153–165 (2003).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids 239(1-3), 84–90 (1998).
[Crossref]

B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
[Crossref]

M. Lancry and B. Poumellec, “Multiphoton absorption processes & UV laser processing of silica-based materials,” Phys. Rep. (to be published).

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Qiu, J.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Quere, F.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

Radzig, V. A.

V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
[Crossref]

Raghavachari, K.

B. Stefanov and K. Raghavachari, “Photoabsorption of the peroxide linkage defect in silicate glasses,” J. Chem. Phys. 111(17), 8039–8042 (1999).
[Crossref]

Rajeev, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Rayner, D.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Reichman, W.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Richardson, M.

Richter, S.

Risbud, S.

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref] [PubMed]

Robertson, J.

E. O'Reilly and J. Robertson, “Theory of defects in vitreous silicon dioxide,” Phys. Rev. B 27(6), 3780–3795 (1983).
[Crossref]

Russo, R.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

Rybaltovskii, A. O.

V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
[Crossref]

Sakurai, Y.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

Sarger, L.

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Seol, K. S.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

Serpi, A.

A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
[Crossref]

Shah, L.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Shimotsuma, Y.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Simova, E.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Skuja, L.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids 352(23-25), 2303–2306 (2006).
[Crossref]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[Crossref]

L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
[Crossref]

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

L. Skuja, A. N. Streletsky, and A. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Stefanov, B.

B. Stefanov and K. Raghavachari, “Photoabsorption of the peroxide linkage defect in silicate glasses,” J. Chem. Phys. 111(17), 8039–8042 (1999).
[Crossref]

Streletsky, A. N.

L. Skuja, A. N. Streletsky, and A. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Sun, H.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Suzuki, T.

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

Taunay, T.

B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
[Crossref]

Taylor, R.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Tohmon, R.

R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
[Crossref]

Trukhin, A.

A. Trukhin, B. Poumellec, and J. Garapon, “Study of the germanium luminescence in silica: from non-controlled impurity to germano-silicate core of telecommunication fiber preforms,” J. Non-Cryst. Solids 332(1-3), 153–165 (2003).
[Crossref]

A. Trukhin and H. Fitting, “Investigation of optical and radiation properties of oxygen deficient silica glasses,” J. Non-Cryst. Solids 248(1), 49–64 (1999).
[Crossref]

B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids 239(1-3), 84–90 (1998).
[Crossref]

Tsay, P.

C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys. 95(2), 417–423 (2004).
[Crossref]

Tsypina, S. I.

V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
[Crossref]

Tünnermann, A.

Uramoto, M.

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

Watanabe, E.

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett. 72(13), 2101–2104 (1994).
[Crossref] [PubMed]

Watanabe, M.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Weeks, R.

R. Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz,” J. Appl. Phys. 27(11), 1376–1381 (1956).
[Crossref]

Weickman, A.

Withford, M.

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Wu, C.

C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys. 95(2), 417–423 (2004).
[Crossref]

Yamasaka, Y.

R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
[Crossref]

Yang, W.

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Yoshino, F.

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Zoubir, A.

Appl. Phys. Lett. (3)

E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse-widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “'Quill' writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

J. Appl. Phys. (3)

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

C. Wu, P. Tsay, H. Cheng, and S. Bai, “Polarized luminescence and absorption of highly oriented, fully conjugated, heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole,” J. Appl. Phys. 95(2), 417–423 (2004).
[Crossref]

R. Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz,” J. Appl. Phys. 27(11), 1376–1381 (1956).
[Crossref]

J. Chem. Phys. (1)

B. Stefanov and K. Raghavachari, “Photoabsorption of the peroxide linkage defect in silicate glasses,” J. Chem. Phys. 111(17), 8039–8042 (1999).
[Crossref]

J. Lumin. (1)

B. Poumellec, T. Taunay, P. Bernage, R. Cortes, and J. Krupa, “Defect population in silica glasses studied by luminescence VUV excitation spectroscopy,” J. Lumin. 72-74, 442–445 (1997).
[Crossref]

J. Non-Cryst. Solids (15)

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass,” J. Non-Cryst. Solids 352(23-25), 2303–2306 (2006).
[Crossref]

K. Kajihara, T. Miura, H. Kamioka, A. Aiba, M. Uramoto, Y. Morimoto, M. Hirano, L. Skuja, and H. Hosono, “Diffusion and reactions of interstitial oxygen species in amorphous SiO2: a review,” J. Non-Cryst. Solids 354(2-9), 224–232 (2008).
[Crossref]

M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009).
[Crossref]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

A. Anedda, C. Carbonaro, F. Clemente, R. Corpino, and A. Serpi, “Excitation pattern of the blue emission in Ge-doped silica,” J. Non-Cryst. Solids 315(1-2), 161–165 (2003).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. Gelardi, “The landscape of the excitation profiles of the αE and β emission bands in silica,” J. Non-Cryst. Solids 245(1-3), 196–202 (1999).
[Crossref]

B. Poumellec, V. Mashinsky, A. Trukhin, and P. Guenot, “270 nm absorption and 432 nm luminescence bands in doped silica glasses,” J. Non-Cryst. Solids 239(1-3), 84–90 (1998).
[Crossref]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

N. Nishikawa, Y. Miyake, E. Watanabe, D. Ito, K. S. Seol, Y. Ohki, K. Ishii, Y. Sakurai, and K. Nagasawa, “Photoluminescence of oxygen-deficient-type defects in α-SiO2,” J. Non-Cryst. Solids 222, 221–227 (1997).

R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, and Y. Hama, “Cause of the 5.0 eV absorption band in pure silica glass+,” J. Non-Cryst. Solids 95-96, 671–678 (1987).
[Crossref]

A. Trukhin and H. Fitting, “Investigation of optical and radiation properties of oxygen deficient silica glasses,” J. Non-Cryst. Solids 248(1), 49–64 (1999).
[Crossref]

A. Trukhin, B. Poumellec, and J. Garapon, “Study of the germanium luminescence in silica: from non-controlled impurity to germano-silicate core of telecommunication fiber preforms,” J. Non-Cryst. Solids 332(1-3), 153–165 (2003).
[Crossref]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids 351(52-54), 3773–3783 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

V. A. Radzig, V. N. Bagratashvili, S. I. Tsypina, P. V. Chernov, and A. O. Rybaltovskii, “Photoinduced reactions of oxygen deficient centers with molecular hydrogen in silica glasses,” J. Phys. Chem. 99(17), 6640–6647 (1995).
[Crossref]

J. Phys. Chem. B (1)

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. 191(1-4), 89–97 (2002).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

L. Skuja, K. Kajihara, T. Kinoshita, M. Hirano, and H. Hosono, “The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 127–130 (2002).
[Crossref]

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (3)

Phys. Rep. (1)

M. Lancry and B. Poumellec, “Multiphoton absorption processes & UV laser processing of silica-based materials,” Phys. Rep. (to be published).

Phys. Rev. B (6)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55(9), 5799–5810 (1997).
[Crossref]

G. Pacchioni and G. Ierańo, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57(2), 818–832 (1998).
[Crossref]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84(24), 245103 (2011).
[Crossref]

E. O'Reilly and J. Robertson, “Theory of defects in vitreous silicon dioxide,” Phys. Rev. B 27(6), 3780–3795 (1983).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Hosono, Y. Abe, H. Imagawa, H. Imai, and K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B Condens. Matter 44(21), 12043–12045 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, “Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2.,” Phys. Rev. Lett. 72(13), 2101–2104 (1994).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005).
[Crossref]

Radiat. Meas. (1)

S. Agnello, R. Boscaino, M. Cannas, A. Cannizzo, F. M. Gelardi, S. Grandi, and M. Leone, “Spectral heterogeneity of oxygen-deficient centers in Ge-doped silica,” Radiat. Meas. 38(4-6), 645–648 (2004).
[Crossref]

Solid State Commun. (2)

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

L. Skuja, A. N. Streletsky, and A. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Other (8)

A. Zoubir, M. Richardson, T. Cardinal, L. Canioni, A. Brocas, and L. Sarger, “Nonlinear optics of femtosecond laser-modified fused silica: applications to waveguide fabrication,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CFG2.

M. Lancry, B. Dufaure, and B. Poumellec, “Self-aligned porous nanoplanes photo-induced by IR femtosecond irradiation in silica glass,” XII Conference on the Physics of Non-Crystalline Solids, Foz do Iguaçu, Brazil (2009).

M. Lancry, K. Cook, J. Canning, and B. Poumellec, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica,” in The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim (2011).

W. Reichman, D. Krol, L. Shah, F. Yoshino, A. Arai, S. Eaton, and P. Herman, “Fluorescence and Raman microscopy of waveguides fabricated using kHz and MHz repetition rate femtosecond lasers,” in Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS) (2006).

J. Garapon, “Etude théorique des défauts déficients en oxygène dans la silice pure ou dopée,” PhD thesis dissertation (Université de Paris 11, Orsay, France, 2001).

M. Lancry, B. Poumellec, and M. Douay, “UV excited luminescence behavior in OH-flooded Ge-doped silica preform plates exposed to 193nm laser light,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA58.

P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, 1961).

M. Lancry, W. Yang, B. Poumellec, and B. Bourguignon, “Scan speed dependence of quill writing with ultrashort laser pulses in fused silica,” OSA topical meeting, Femtosecond Laser Microfabrication (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup scheme for configuration for writing (in red) and for analyses (in blue).

Fig. 2
Fig. 2

Unpolarized UV-VUV absorbance spectra before and after IR-fs irradiation of Suprasil type 1 plate (S1 sample). The full line is for initial spectrum. The empty and full circles are for spectra after irradiation with 0.5μJ/pulse and 1μJ/pulse respectively. The interaction length was estimated to be around 100μm based on optical and electronic microscopy observations performed on the sample cross-section.

Fig. 3
Fig. 3

A bird’s-eye view of the PL spectrum mapping of the IR-fs irradiated Suprasil type 1 S1 sample. The excitation energy spanned from 4eV up to 8eV while the PL was recorded between 2eV and 6.5eV. The linear traces on the right hand side of the picture are ghosts of the excitation light.

Fig. 4
Fig. 4

Samples of PL spectra of the IR femtosecond irradiated S1 sample. The PL energy was recorded between 2eV and 6.5eV. The dashed line for excitation at 6.8eV while the full line is for excitation at 5eV. Detection is not analyzed.

Fig. 5
Fig. 5

UV band UV-VUV excitation spectra before and after IR femtosecond laser irradiation at 1μJ/pulse (S1 sample). The laser polarization x was parallel to the sample displacement. ● is for the pristine sample while ❍ is after exposure. Detection is not analyzed.

Fig. 6
Fig. 6

UV-VUV excitation spectra of the UV emission band after IR-fs laser irradiation of S1 sample with the laser writing polarization parallel to the laser scanning. The parameter of the experiment is the polarization direction of the synchrotron beam probe relatively to the writing direction: ● is for synchrotron beam polarization parallel to the writing direction x while ❍ is for perpendicular orientation. Detection is not analyzed.

Fig. 7
Fig. 7

Polarization degree LPD of the α band versus the excitation wavelength. Detection at 4.4eV is analyzed. The writing polarization was parallel to the laser scanning direction x (sample S1). The probe polarization of the excitation was parallel to the laser scanning direction (x).

Fig. 8
Fig. 8

Symmetry of the excited states of SiODC(II). If S0→S2 more activated when s pol // written line ⇒ O-O axis is partially aligned along the scanning direction. The anisotropic defect is partially oriented, not by writing laser polarization but rather by the scanning.

Tables (3)

Tables Icon

Table 1 Sample Laser Irradiation Conditions

Tables Icon

Table 2 EPD’s (Ix-Iy)/(Ix + Iy) of the Excitation of the Luminescence Bands in Irradiated Silica Samples*

Tables Icon

Table 3 EPD (Ix-Iy)/(Ix + Iy) of the 6.8 eV Excitation Band in Irradiated Silica Samples*

Metrics