Abstract

Fabrication of microstructures containing active compounds, such as fluorescent dyes and nanoparticles have been exploited in the last few years, aiming at applications from photonics to biology. Here we fabricate, using two-photon polymerization, microstructures containing the fluorescent dyes Stilbene 420, Disodium Fluorescein and Rhodamine B. The produced microstructures, containing dyes at specific sites, present good structural integrity and a broad fluorescence spectrum, from about 350 nm until 700 nm. Such spectrum can be tuned by using different excitation wavelengths and selecting the excitation position in the microstructure. These results are interesting for designing multi-doped structures, presenting tunable and broad fluorescence spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
    [CrossRef] [PubMed]
  2. S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst.7(4), 411–415 (1998).
    [CrossRef]
  3. M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
    [CrossRef]
  4. Y. H. Pao and P. M. Rentzepis, “Laser-Induced Production of Free Radicals in Organic Compounds (77 Degrees K Polymerization of Styrene and P-Isobutylstyrene 2-Photon Absorption E),” Appl. Phys. Lett.6(5), 93–95 (1965).
    [CrossRef]
  5. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  6. C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
    [CrossRef]
  7. V. Tribuzi, D. S. Corrêa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonça, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express20(19), 21107–21113 (2012).
    [CrossRef] [PubMed]
  8. J. Wang, H. Xia, B. B. Xu, L. G. Niu, D. Wu, Q. D. Chen, and H. B. Sun, “Remote manipulation of micronanomachines containing magnetic nanoparticles,” Opt. Lett.34(5), 581–583 (2009).
    [CrossRef] [PubMed]
  9. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
    [CrossRef] [PubMed]
  10. A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
    [CrossRef] [PubMed]
  11. P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
    [CrossRef]
  12. A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
    [CrossRef]
  13. D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
    [CrossRef]
  14. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
    [CrossRef]
  15. A. K. Sharma, D. S. Ahlawat, D. Mohan, and R. D. Singh, “Concentration-dependent energy transfer studies in ternary dye mixture of Stilbene-420, Coumarin-540 and Nile Blue,” Spectrochim. Acta A Mol. Biomol. Spectrosc.71(5), 1631–1633 (2009).
    [CrossRef] [PubMed]
  16. T. D. Z. Atvars, C. A. Bortolato, and D. Dibbern-Brunelli, “Electronic absorption and fluorescence spectra of xanthene dyes in polymers,” J. Photochem. Photobiol. Chem.68(1), 41–50 (1992).
    [CrossRef]
  17. R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin.27(4), 455–462 (1982).
    [CrossRef]

2012 (2)

V. Tribuzi, D. S. Corrêa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonça, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express20(19), 21107–21113 (2012).
[CrossRef] [PubMed]

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

2010 (1)

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

2009 (4)

A. K. Sharma, D. S. Ahlawat, D. Mohan, and R. D. Singh, “Concentration-dependent energy transfer studies in ternary dye mixture of Stilbene-420, Coumarin-540 and Nile Blue,” Spectrochim. Acta A Mol. Biomol. Spectrosc.71(5), 1631–1633 (2009).
[CrossRef] [PubMed]

J. Wang, H. Xia, B. B. Xu, L. G. Niu, D. Wu, Q. D. Chen, and H. B. Sun, “Remote manipulation of micronanomachines containing magnetic nanoparticles,” Opt. Lett.34(5), 581–583 (2009).
[CrossRef] [PubMed]

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

2008 (1)

P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
[CrossRef]

2006 (1)

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

2004 (1)

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

1999 (1)

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

1998 (1)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst.7(4), 411–415 (1998).
[CrossRef]

1997 (1)

1992 (1)

T. D. Z. Atvars, C. A. Bortolato, and D. Dibbern-Brunelli, “Electronic absorption and fluorescence spectra of xanthene dyes in polymers,” J. Photochem. Photobiol. Chem.68(1), 41–50 (1992).
[CrossRef]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

1982 (1)

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin.27(4), 455–462 (1982).
[CrossRef]

1965 (1)

Y. H. Pao and P. M. Rentzepis, “Laser-Induced Production of Free Radicals in Organic Compounds (77 Degrees K Polymerization of Styrene and P-Isobutylstyrene 2-Photon Absorption E),” Appl. Phys. Lett.6(5), 93–95 (1965).
[CrossRef]

Ahlawat, D. S.

A. K. Sharma, D. S. Ahlawat, D. Mohan, and R. D. Singh, “Concentration-dependent energy transfer studies in ternary dye mixture of Stilbene-420, Coumarin-540 and Nile Blue,” Spectrochim. Acta A Mol. Biomol. Spectrosc.71(5), 1631–1633 (2009).
[CrossRef] [PubMed]

Atvars, T. D. Z.

T. D. Z. Atvars, C. A. Bortolato, and D. Dibbern-Brunelli, “Electronic absorption and fluorescence spectra of xanthene dyes in polymers,” J. Photochem. Photobiol. Chem.68(1), 41–50 (1992).
[CrossRef]

Auyeung, R.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Avansi, W.

Baldacchini, T.

P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Bortolato, C. A.

T. D. Z. Atvars, C. A. Bortolato, and D. Dibbern-Brunelli, “Electronic absorption and fluorescence spectra of xanthene dyes in polymers,” J. Photochem. Photobiol. Chem.68(1), 41–50 (1992).
[CrossRef]

Cardoso, M. R.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

Chen, Q. D.

Chichkov, B.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Chichkov, B. N.

Chrisey, D. B.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Correa, D. S.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

Corrêa, D. S.

Dibbern-Brunelli, D.

T. D. Z. Atvars, C. A. Bortolato, and D. Dibbern-Brunelli, “Electronic absorption and fluorescence spectra of xanthene dyes in polymers,” J. Photochem. Photobiol. Chem.68(1), 41–50 (1992).
[CrossRef]

Doraiswamy, A.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Farrer, R. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Farsari, M.

Fletcher, A. N.

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin.27(4), 455–462 (1982).
[CrossRef]

Fotakis, C.

Fourkas, J. T.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Gadonas, R.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Jin, C.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Joshi, M. P.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Kawata, S.

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst.7(4), 411–415 (1998).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kontenis, L.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Kubin, R. F.

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin.27(4), 455–462 (1982).
[CrossRef]

LaFratta, C. N.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Longo, E.

Mageswaran, P.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Malinauskas, M.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Marlow, F.

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

Maruo, S.

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst.7(4), 411–415 (1998).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Mazur, E.

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
[CrossRef]

Mendonça, C. R.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

V. Tribuzi, D. S. Corrêa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonça, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express20(19), 21107–21113 (2012).
[CrossRef] [PubMed]

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
[CrossRef]

Mente, P.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Misoguti, L.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

Modi, R.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Mohan, D.

A. K. Sharma, D. S. Ahlawat, D. Mohan, and R. D. Singh, “Concentration-dependent energy transfer studies in ternary dye mixture of Stilbene-420, Coumarin-540 and Nile Blue,” Spectrochim. Acta A Mol. Biomol. Spectrosc.71(5), 1631–1633 (2009).
[CrossRef] [PubMed]

Mooney, D. J.

P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
[CrossRef]

Nakamura, O.

Narayan, R. J.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Naughton, M. J.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Niu, L. G.

Ovsianikov, A.

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Paipulas, D.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Pao, Y. H.

Y. H. Pao and P. M. Rentzepis, “Laser-Induced Production of Free Radicals in Organic Compounds (77 Degrees K Polymerization of Styrene and P-Isobutylstyrene 2-Photon Absorption E),” Appl. Phys. Lett.6(5), 93–95 (1965).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Prasad, P. N.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Pudavar, H. E.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Purlys, V.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Reianhardt, B. A.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Y. H. Pao and P. M. Rentzepis, “Laser-Induced Production of Free Radicals in Organic Compounds (77 Degrees K Polymerization of Styrene and P-Isobutylstyrene 2-Photon Absorption E),” Appl. Phys. Lett.6(5), 93–95 (1965).
[CrossRef]

Ribeiro, C.

Saleh, B. E. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Sharma, A. K.

A. K. Sharma, D. S. Ahlawat, D. Mohan, and R. D. Singh, “Concentration-dependent energy transfer studies in ternary dye mixture of Stilbene-420, Coumarin-540 and Nile Blue,” Spectrochim. Acta A Mol. Biomol. Spectrosc.71(5), 1631–1633 (2009).
[CrossRef] [PubMed]

Shizhou, X.

Singh, R. D.

A. K. Sharma, D. S. Ahlawat, D. Mohan, and R. D. Singh, “Concentration-dependent energy transfer studies in ternary dye mixture of Stilbene-420, Coumarin-540 and Nile Blue,” Spectrochim. Acta A Mol. Biomol. Spectrosc.71(5), 1631–1633 (2009).
[CrossRef] [PubMed]

Sun, H. B.

Swiatkiewicz, J.

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Tayalia, P.

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
[CrossRef]

Teich, M. C.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

Tribuzi, V.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

V. Tribuzi, D. S. Corrêa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonça, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express20(19), 21107–21113 (2012).
[CrossRef] [PubMed]

Vamvakaki, M.

Vengris, M.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Voss, T.

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

Wang, J.

Wu, D.

Xia, H.

Xu, B. B.

Žukauskas, A.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Acta Biomater. (1)

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater.2(3), 267–275 (2006).
[CrossRef] [PubMed]

Adv. Mater. (1)

P. Tayalia, C. R. Mendonça, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater.20(23), 4494–4498 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999).
[CrossRef]

Y. H. Pao and P. M. Rentzepis, “Laser-Induced Production of Free Radicals in Organic Compounds (77 Degrees K Polymerization of Styrene and P-Isobutylstyrene 2-Photon Absorption E),” Appl. Phys. Lett.6(5), 93–95 (1965).
[CrossRef]

C. R. Mendonça, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012).
[CrossRef]

J. Appl. Phys. (1)

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004).
[CrossRef]

J. Lumin. (1)

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin.27(4), 455–462 (1982).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst.7(4), 411–415 (1998).
[CrossRef]

J. Photochem. Photobiol. Chem. (1)

T. D. Z. Atvars, C. A. Bortolato, and D. Dibbern-Brunelli, “Electronic absorption and fluorescence spectra of xanthene dyes in polymers,” J. Photochem. Photobiol. Chem.68(1), 41–50 (1992).
[CrossRef]

Lith. J. Phys. (1)

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic Dye Doped Microstructures for Optically Active Functional Devices Fabricated via Two-Photon Polymerization Technique,” Lith. J. Phys.50(1), 55–61 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

A. K. Sharma, D. S. Ahlawat, D. Mohan, and R. D. Singh, “Concentration-dependent energy transfer studies in ternary dye mixture of Stilbene-420, Coumarin-540 and Nile Blue,” Spectrochim. Acta A Mol. Biomol. Spectrosc.71(5), 1631–1633 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Emission spectrum of microstructures doped with Stilbene 420 (blue), Disodium Fluorescein (green) and Rhodamine B (red).

Fig. 2
Fig. 2

(a) Scanning electron micrograph of a double-doped microstructure (top view). (b) Confocal fluorescent microscopy image of the same microstructure.

Fig. 3
Fig. 3

Emission spectrum of the double-doped microstructure (black) and corresponding two-peak Gaussian fit.

Fig. 4
Fig. 4

(a) Transmission microscope image of double-doped microstructure. (b) Microscope image when excitations at (b) 325 nm and (c) 550 nm are employed.

Fig. 5
Fig. 5

(a) Scanning electron micrograph of double-doped microstructures. (b) Confocal microscope image of the same microstructure.

Fig. 6
Fig. 6

(a) Fluorescence spectrum of triple-doped microstructure (black) and corresponding three-peak Gaussian fit (orange). The blue, green and red lines represent, respectively, the Gaussian contributions of Stilbene 420, Disodium Fluorescein and Rhodamine B. (b) Fluorescence of the microstructure when excitation is directed to the region doped with Stilbene 420 (blue) and with Rhodamine B (red).

Metrics