Abstract

This study is the first to investigate an optically addressed, electrically tunable prism grating based on homogeneously aligned liquid crystals (LCs) with a photoconductive layer. A conductivity-gradient electrode-like grating pattern of the polymer layer results in a spatially periodic gradient of the effective electric-field drop, producing a prism grating with a spatially periodic LC gradient reorientation. The asymmetric diffraction pattern can be adjusted by varying the dc voltage. The first-order diffraction efficiency is 64% at optimal conditions. The proposed prism grating exhibits extremely low diffraction noise in the off state, a high switching contrast inthe on–off state (~1000), simplicity of fabrication, and high controllability at a low voltage range (0 to 0.4 V/μm).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
    [CrossRef]
  2. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
    [CrossRef]
  3. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [CrossRef]
  4. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
    [CrossRef] [PubMed]
  5. H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
    [CrossRef]
  6. S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
    [CrossRef]
  7. H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
    [CrossRef]
  8. C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. A. Anderson, and P. J. Bos, “Asymmetric transmissive behavior of liquid-crystal diffraction gratings,” Opt. Lett. 26(15), 1188–1190 (2001).
    [CrossRef] [PubMed]
  9. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [CrossRef] [PubMed]
  10. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43(1), 11–19 (2004).
    [CrossRef] [PubMed]
  11. H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
    [CrossRef]
  12. H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
    [CrossRef]
  13. K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
    [CrossRef]
  14. Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
    [CrossRef]
  15. F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, “Modulation characteristics of optically controllable transparencies based on a photoconductor-liquid-crystal structure,” J. Opt. Technol. 67(8), 712–716 (2000).
    [CrossRef]
  16. R. Magnusson and T. K. Gaylord, “Diffraction regimes of transmission gratings,” J. Opt. Soc. Am. 68(6), 809–814 (1978).
    [CrossRef]

2007 (1)

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

2004 (1)

2003 (1)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

2002 (1)

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

2001 (1)

2000 (4)

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
[CrossRef] [PubMed]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, “Modulation characteristics of optically controllable transparencies based on a photoconductor-liquid-crystal structure,” J. Opt. Technol. 67(8), 712–716 (2000).
[CrossRef]

1998 (1)

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

1996 (1)

1995 (1)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

1994 (2)

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

1992 (1)

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[CrossRef]

1978 (1)

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Anderson, J. A.

Apter, B.

Bahat-Treidel, E.

Bos, P. J.

C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. A. Anderson, and P. J. Bos, “Asymmetric transmissive behavior of liquid-crystal diffraction gratings,” Opt. Lett. 26(15), 1188–1190 (2001).
[CrossRef] [PubMed]

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Chaika, A. N.

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Chien, L. C.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Dorschner, T. A.

Efron, U.

Fan, Y.-H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

Friedman, L. J.

Gartland, E. C.

Gaylord, T. K.

Gibbons, W. M.

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

Hobbs, D. S.

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Kang, S. W.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Kelly, J. R.

Lee, C.-R.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Lo, K.-C.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Loktev, M. Yu.

Magnusson, R.

Maker, P.

Mo, T.-S.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Morichev, I. E.

Muller, R.

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Naumov, A. F.

Nishimura, M.

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

Okada, H.

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

Onnagawa, H.

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

Pletneva, N. I.

Psaltis, D.

Ren, H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

Resler, D. P.

Sakata, H.

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

Sharp, R. C.

Shiyanovskii, S. V.

Sprunt, S.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Sun, S. T.

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Titus, C. M.

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Vladimirov, F. L.

Wang, J.-D.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Wang, X.

Wang, Y.

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[CrossRef]

Wilson, D.

Wu, S.-T.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (7)

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Technol. (1)

Jpn. J. Appl. Phys. (2)

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

Nature (1)

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of (a) the procedure for the fabrication of the electrically tunable prism grating based on the homogeneously aligned LC cell with a photoconductive polymer layer and (b) the electrically tunable prism grating.

Fig. 2
Fig. 2

Experimental setup for examining the programmable asymmetric diffraction effect of the formed LC prism grating. P, polarizer; A, analyzer; λ/2, half-wave plate; D, photodetector.

Fig. 3
Fig. 3

(a) Variations in the 1st-order diffraction efficiencies (η1) caused by the increased dc voltage (V) with various UV exposure times; (b) voltage-dependent diffraction efficiencies of the 0th, + 1st, and −1st orders with a 7 h UV exposure time of 7 h.

Fig. 4
Fig. 4

(a) Normally black operation of the TN cell. (b) Variation in the transmission of the TN cell at an applied voltage with various exposure time to UV light.

Fig. 5
Fig. 5

The variation of the transmission of the homogeneously-aligned LC cell coated with the PVK layer with applied voltages. The LC cell is pre-irradiated uniformly by the UV light with 10 mW/cm2 for 7 h.

Fig. 6
Fig. 6

Voltage-dependent diffraction patterns and structures of prism grating under a microscope with crossed polarizers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V LC  = V 1 + (d PVK σ LC /d LC σ PVK ) ,
σ PVK = σ PVK(dark) +β I γ ,
η 0,±1 = D 0,±1 D total ,

Metrics