Abstract

This study is the first to investigate an optically addressed, electrically tunable prism grating based on homogeneously aligned liquid crystals (LCs) with a photoconductive layer. A conductivity-gradient electrode-like grating pattern of the polymer layer results in a spatially periodic gradient of the effective electric-field drop, producing a prism grating with a spatially periodic LC gradient reorientation. The asymmetric diffraction pattern can be adjusted by varying the dc voltage. The first-order diffraction efficiency is 64% at optimal conditions. The proposed prism grating exhibits extremely low diffraction noise in the off state, a high switching contrast inthe on–off state (~1000), simplicity of fabrication, and high controllability at a low voltage range (0 to 0.4 V/μm).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
    [CrossRef]
  2. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
    [CrossRef]
  3. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [CrossRef]
  4. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
    [CrossRef] [PubMed]
  5. H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
    [CrossRef]
  6. S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
    [CrossRef]
  7. H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
    [CrossRef]
  8. C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. A. Anderson, and P. J. Bos, “Asymmetric transmissive behavior of liquid-crystal diffraction gratings,” Opt. Lett. 26(15), 1188–1190 (2001).
    [CrossRef] [PubMed]
  9. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [CrossRef] [PubMed]
  10. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43(1), 11–19 (2004).
    [CrossRef] [PubMed]
  11. H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
    [CrossRef]
  12. H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
    [CrossRef]
  13. K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
    [CrossRef]
  14. Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
    [CrossRef]
  15. F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, “Modulation characteristics of optically controllable transparencies based on a photoconductor-liquid-crystal structure,” J. Opt. Technol. 67(8), 712–716 (2000).
    [CrossRef]
  16. R. Magnusson and T. K. Gaylord, “Diffraction regimes of transmission gratings,” J. Opt. Soc. Am. 68(6), 809–814 (1978).
    [CrossRef]

2007 (1)

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

2004 (1)

2003 (1)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

2002 (1)

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

2001 (1)

2000 (4)

F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, “Modulation characteristics of optically controllable transparencies based on a photoconductor-liquid-crystal structure,” J. Opt. Technol. 67(8), 712–716 (2000).
[CrossRef]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
[CrossRef] [PubMed]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

1998 (1)

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

1996 (1)

1995 (1)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

1994 (2)

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

1992 (1)

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[CrossRef]

1978 (1)

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Anderson, J. A.

Apter, B.

Bahat-Treidel, E.

Bos, P. J.

C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. A. Anderson, and P. J. Bos, “Asymmetric transmissive behavior of liquid-crystal diffraction gratings,” Opt. Lett. 26(15), 1188–1190 (2001).
[CrossRef] [PubMed]

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Chaika, A. N.

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Chien, L. C.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Dorschner, T. A.

Efron, U.

Fan, Y.-H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

Friedman, L. J.

Gartland, E. C.

Gaylord, T. K.

Gibbons, W. M.

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

Hobbs, D. S.

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Kang, S. W.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Kelly, J. R.

Lee, C.-R.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Lo, K.-C.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Loktev, M. Yu.

Magnusson, R.

Maker, P.

Mo, T.-S.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Morichev, I. E.

Muller, R.

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Naumov, A. F.

Nishimura, M.

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

Okada, H.

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

Onnagawa, H.

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

Pletneva, N. I.

Psaltis, D.

Ren, H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

Resler, D. P.

Sakata, H.

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

Sharp, R. C.

Shiyanovskii, S. V.

Sprunt, S.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Sun, S. T.

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Titus, C. M.

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Vladimirov, F. L.

Wang, J.-D.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

Wang, X.

Wang, Y.

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[CrossRef]

Wilson, D.

Wu, S.-T.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (7)

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

H. Ren and S.-T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
[CrossRef]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[CrossRef]

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Technol. (1)

Jpn. J. Appl. Phys. (2)

H. Sakata and M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1516–1521 (2000).
[CrossRef]

H. Okada, P. J. Bos, and H. Onnagawa, “In-plane liquid crystal beam steering devices with a beam separation structure,” Jpn. J. Appl. Phys. 37(Part 1, No. 5A), 2576–2580 (1998).
[CrossRef]

Nature (1)

Y. Wang, “Photoconductivity of fullerene-doped polymers,” Nature 356(6370), 585–587 (1992).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of (a) the procedure for the fabrication of the electrically tunable prism grating based on the homogeneously aligned LC cell with a photoconductive polymer layer and (b) the electrically tunable prism grating.

Fig. 2
Fig. 2

Experimental setup for examining the programmable asymmetric diffraction effect of the formed LC prism grating. P, polarizer; A, analyzer; λ/2, half-wave plate; D, photodetector.

Fig. 3
Fig. 3

(a) Variations in the 1st-order diffraction efficiencies (η1) caused by the increased dc voltage (V) with various UV exposure times; (b) voltage-dependent diffraction efficiencies of the 0th, + 1st, and −1st orders with a 7 h UV exposure time of 7 h.

Fig. 4
Fig. 4

(a) Normally black operation of the TN cell. (b) Variation in the transmission of the TN cell at an applied voltage with various exposure time to UV light.

Fig. 5
Fig. 5

The variation of the transmission of the homogeneously-aligned LC cell coated with the PVK layer with applied voltages. The LC cell is pre-irradiated uniformly by the UV light with 10 mW/cm2 for 7 h.

Fig. 6
Fig. 6

Voltage-dependent diffraction patterns and structures of prism grating under a microscope with crossed polarizers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V LC  = V 1 + (d PVK σ LC /d LC σ PVK ) ,
σ PVK = σ PVK(dark) +β I γ ,
η 0,±1 = D 0,±1 D total ,

Metrics