Abstract

We present a technique in which small solute nonlinearities may be extracted from large solvent signals by performing simultaneous Z-scans on two samples (solvent and solution). By using a dual-arm Z-scan apparatus with identical arms, fitting error in determining the solute nonlinearity is reduced because the irradiance fluctuations are correlated for both the solvent and solution measurements. To verify the sensitivity of this technique, the dispersion of nonlinear refraction of a squaraine molecule is measured. Utilizing this technique allows for the effects of the solvent n2 to be effectively eliminated, thus overcoming a longstanding problem in nonlinear optical characterization of organic dyes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Bader, G. Marowsky, A. Bahtiar, K. Koynov, C. Bubeck, H. Tillmann, H.-H. Hörhold, and S. Pereira, “Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching,” J. Opt. Soc. Am. B 19(9), 2250–2262 (2002).
    [CrossRef]
  2. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
    [CrossRef]
  3. M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [CrossRef]
  5. Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012).
    [CrossRef]
  6. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  7. J. S. Aitchison, A. Villeneuve, and G. I. Stegeman, “All-optical switching in a nonlinear GaAlAs X junction,” Opt. Lett. 18(14), 1153–1155 (1993).
    [CrossRef] [PubMed]
  8. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [CrossRef]
  9. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
    [CrossRef] [PubMed]
  10. J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
    [CrossRef] [PubMed]
  11. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008).
    [CrossRef]
  12. M. Kivala and F. Diederich, “Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores,” Acc. Chem. Res. 42(2), 235–248 (2009).
    [CrossRef] [PubMed]
  13. C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao, and Y. Nie, “Third- and fifth-order optical nonlinearities in a new stilbazolium derivative,” J. Opt. Soc. Am. B 19(3), 369–375 (2002).
    [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  15. H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
    [CrossRef]
  16. Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998).
    [CrossRef]
  17. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
    [CrossRef]
  18. R. Dawley, Sales Department, Starna Cells, Inc., P.O. Box 1919, Atascadero, CA, 93423 (personal communication, 2012).
  19. S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
    [CrossRef]
  20. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
    [CrossRef]
  21. OriginLab (2012). Origin (version 8.6.0) [Computer software]. Northampton, MA. Retrieved June 1, 2012. Available from http://www.OriginLab.com .
  22. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
    [CrossRef] [PubMed]
  23. J. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
    [CrossRef]
  24. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
    [CrossRef]
  25. M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
    [CrossRef]
  26. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  27. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  28. B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed Z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008).
    [CrossRef] [PubMed]
  29. R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A, Pure Appl. Opt. 11(8), 085001 (2009).
    [CrossRef]
  30. K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).
    [CrossRef]

2012 (1)

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012).
[CrossRef]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010 (3)

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[CrossRef]

2009 (3)

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A, Pure Appl. Opt. 11(8), 085001 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

M. Kivala and F. Diederich, “Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores,” Acc. Chem. Res. 42(2), 235–248 (2009).
[CrossRef] [PubMed]

2008 (3)

2006 (1)

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

2003 (2)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).
[CrossRef]

2002 (2)

1998 (2)

D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
[CrossRef] [PubMed]

Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998).
[CrossRef]

1993 (1)

1991 (1)

H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

1971 (1)

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

1965 (1)

J. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
[CrossRef]

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

Aitchison, J. S.

Bader, M. A.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bahtiar, A.

Balu, M.

Barlow, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
[CrossRef]

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[CrossRef] [PubMed]

Barrasso, E.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Belfield, K.

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Brédas, J.-L.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Bubeck, C.

Chaux, R.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Christodoulides, D. N.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[CrossRef]

Couris, S.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

de Araujo, C. B.

H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[CrossRef]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

M. Kivala and F. Diederich, “Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores,” Acc. Chem. Res. 42(2), 235–248 (2009).
[CrossRef] [PubMed]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Faucher, O.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A, Pure Appl. Opt. 11(8), 085001 (2009).
[CrossRef]

Gerasov, A. O.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

Gomes, S. L.

H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[CrossRef]

Gong, Q.-

Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998).
[CrossRef]

Gu, B.

Hagan, D. J.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Hales, J. M.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[CrossRef] [PubMed]

Hörhold, H.-H.

Hu, H.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Huang, X.-Q.

Ji, W.

Kachkovski, A. D.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Kamada, K.

K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).
[CrossRef]

Khoo, I. C.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[CrossRef]

Kivala, M.

M. Kivala and F. Diederich, “Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores,” Acc. Chem. Res. 42(2), 235–248 (2009).
[CrossRef] [PubMed]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Koudoumas, E.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Koynov, K.

Kulagin, I. A.

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A, Pure Appl. Opt. 11(8), 085001 (2009).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Kurdyukov, V. V.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Lavorel, B.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Lepkowicz, R.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Li, D.

Li, J.-

Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998).
[CrossRef]

Li, Y.

Li, Z.-Y.

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012).
[CrossRef]

Lipson, M.

Lu, Z.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Ma, H.

H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[CrossRef]

Marder, S.

Marder, S. R.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[CrossRef] [PubMed]

Marowsky, G.

Masunov, A. E.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Matichak, J.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Meng, Z.-M.

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012).
[CrossRef]

Michaut, X.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Milam, D.

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Nie, Y.

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Ohira, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Orr, B. J.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

Padilha, L. A.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
[CrossRef]

Peceli, D.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Pereira, S.

Perry, J. W.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[CrossRef] [PubMed]

Przhonska, O. V.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Qin, F.

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012).
[CrossRef]

Renard, M.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Salamo, G. J.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[CrossRef]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

Scimeca, M. L.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Slominsky, Y. L.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[CrossRef]

J. S. Aitchison, A. Villeneuve, and G. I. Stegeman, “All-optical switching in a nonlinear GaAlAs X junction,” Opt. Lett. 18(14), 1153–1155 (1993).
[CrossRef] [PubMed]

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Tillmann, H.

Tolmachev, A. I.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Van Stryland, E. W.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[CrossRef]

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Villeneuve, A.

Viniychuk, O. O.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Wang, D.

Ward, J.

J. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
[CrossRef]

Ward, J. F.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

Webster, S.

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Yang, H.

Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998).
[CrossRef]

Yao, S.

Yesudas, K.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Zhan, C.

Zhang, D.

Zhang, T.-

Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998).
[CrossRef]

Zhao, L.

Zheng, S.

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
[CrossRef]

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[CrossRef] [PubMed]

Zhu, D.

Acc. Chem. Res. (1)

M. Kivala and F. Diederich, “Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores,” Acc. Chem. Res. 42(2), 235–248 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Adv. Opt. Photonics (1)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[CrossRef]

Anal. Chem. (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Chin. Phys. Lett. (1)

Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

J. Am. Chem. Soc. (1)

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. (1)

Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A, Pure Appl. Opt. 11(8), 085001 (2009).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Lett. (1)

S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010).
[CrossRef]

Mol. Phys. (1)

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

J. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
[CrossRef]

Science (1)

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Other (4)

OriginLab (2012). Origin (version 8.6.0) [Computer software]. Northampton, MA. Retrieved June 1, 2012. Available from http://www.OriginLab.com .

R. Dawley, Sales Department, Starna Cells, Inc., P.O. Box 1919, Atascadero, CA, 93423 (personal communication, 2012).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The Z-scan experimental apparatus and (b) Z-scan open aperture (OA, red dotted line) and closed aperture (CA, black solid line) signals along with division (CA/OA, blue dot-dash line) for Δϕ0 = −0.5, S = 0.33, and q0 = 0.3.

Fig. 2
Fig. 2

Schematic of dual-arm Z-scan. The items labeled CA and OA represent the closed aperture and open aperture detectors for each arm, respectively. The reference beam used for energy monitoring is not shown.

Fig. 3
Fig. 3

Procedure of processing dual-arm Z-scan data using the low-energy background (LEB(Z)) and the corresponding Z-scan curves of the solution and solvent at 695nm at (a) low energy (< 1 nJ) scan of a squaraine solution (SD-O 2405 [19]) in toluene at a concentration (C) of 47 μM and solvent and their (b) subtraction, (c) high energy (11 nJ, I0 = 18 GW/cm2) scan of solution and solvent and their (d) subtraction, (e) direct comparison of (b) and (d), and (f) corrected solute signal and fit with Δϕ0 = −0.06, q0 = 0.03, using S = 0.33.

Fig. 4
Fig. 4

(a) Sequential CA single-arm Z-scans of the solvent toluene (open red triangles) and the solution SD-O 2405 in toluene (closed black squares) at 695 nm where the concentration C = 47 μm, the pulse energy E = 31 nJ (I0 = 51 GW/cm2) and (b) the subtraction of the solvent CA signal from the solution CA signal (open green squares); (c) Simultaneous CA dual-arm Z-scans of the solvent toluene (open red triangles) and the solution SD-O 2405 in toluene (closed black squares) at 695 nm using the same pulse and (d) the subtraction of the solvent CA signal from the solution CA signal after LEB(Z) subtraction (open green squares) and corresponding fit of both 2PA and NLR (solid blue line) with Δϕ0 = −0.16, q0 = 0.077, using S = 0.33.

Fig. 5
Fig. 5

(a) Sequential Z-scans of the solution SD-O 2405 in toluene (closed black squares) and solvent toluene (open red triangles) at 780 nm, E = 50 nJ (I0 = 88 GW/cm2), C = 0.60 mM and (b) subtraction of solution and solvent CA Z-scan signals (open green squares) along with the OA Z-scan of the solution (closed black circles) and corresponding 2PA and CA fit (solid red and blue line, respectively) with α2,U-Fit = 0.013 cm/GW and n2,U-Fit = −0.35 × 10−15 cm2/W; (c) Dual arm Z-scans of solution (closed black squares) and solvent (open red triangles) taken simultaneoulsy; (d) Simultaneous subtraction of solution and solvent yielding solute signal (open green squares) and fit incorporating both 2PA and NLR (solid blue line) with Δϕ0 = −0.25, q0 = 0.11 using S = 0.33.

Fig. 6
Fig. 6

CA dual-arm Z-scans at 880 nm, E = 13 nJ, C = 0.60 mM, and I0 = 22 GW/cm2 for (a) toluene (open black circles) and (b) solution (open black circles) along with independent fits for n2 – Δn2 (solid blue line) and n2 + Δn2 (solid green line); (c) TU(Z) (open green squares) of SD-O 2405 and fit (solid blue line) with Δϕ0 = −0.023, q0 = 0.0020 (see note in text), using S = 0.33.

Fig. 7
Fig. 7

(a) 2PA cross section (open black squares) and NLR cross section (open red circles) versus wavelength of SD-O 2405 measured by the dual-arm Z-scan technique. GM and RGM represent the units of cross section for 2PA and NLR, respectively, as 10−50 cms·molecule−1·photon−1. The solid black line and red line are from the three-level sum-over-states model [2,23,24] for the 2PA and NLR cross sections, respectively. The inset shows the structure and linear absorption of the molecule dissolved in toluene. (b) NLR cross sections along with the three-level sum-over-states model for the region of small NLR with the vertical axis expanded.

Fig. 8
Fig. 8

ΔTp-v,U for a CA solute signal and CA solute signal extracted via subtraction technique.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

LEB(Z)= T S (Z) | E0 T V (Z) | E0
T U,uncorr (Z)=1+( T S (Z) T V (Z))
T U (Z)= T U,uncorr (Z)LEB(Z)
n 2 ±Δ n 2 Δ T pv ±δ
n 2,U ±Δ n 2,U (Δ T pv,S Δ T pv,V )± δ S 2 + δ V 2 ,
n 2,U ±Δ n 2,U (Δ T pv,S Δ T pv,V )± δ S,UnC 2 + δ V,UnC 2 ,
Δ T pv ±δ=( T p ±σ)( T v ±σ)
T(Z)1+ 4Δφ (Z/ z 0 ) 0 ( (Z/ z 0 ) 2 +9)( (Z/ z 0 ) 2 +1)
Δ φ 0 = k 0 n 2 I 0 L
I 0 = 2E π 3/2 τ w 0 2
Δ T err =Δ T pv,armB Δ T pv,armA 0.406ΔΔ φ 0 =0.406 k 0 n 2 Δ I 0 L
Δ I 0 I 0 ΔΔ φ 0 Δ φ 0 Δ T err Δ T pv ΔE E 2 Δ w 0 w 0
Δ T pv,S Δ T pv,V +Δ T pv,U

Metrics