Abstract

We report on the formation of gratings photo-induced by femtosecond laser pulses in SF59 glass. Depending on the number of pulses used to excite the sample and the pump power density, transient or permanent gratings are induced. We demonstrate that the grating formation is not instantaneous and is produced by laser-induced defects. This results in a change of both the real and imaginary part of the index of refraction. A simple set-up that records the temporal evolution of both parameters during the laser excitation is also presented. It makes it possible to evaluate the weight of both contributions to the grating diffraction efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett.31(23), 3495–3497 (2006).
    [CrossRef] [PubMed]
  2. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32(17), 2559–2561 (2007).
    [CrossRef] [PubMed]
  3. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
    [CrossRef]
  4. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011).
    [CrossRef]
  5. J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003).
    [CrossRef]
  6. G. Lin, F. Luo, F. He, Q. Chen, D. Chen, Y. Cheng, L. Zhang, J. Qiu, and Q. Zhao, “Different refractive index change behavior in borosilicate glasses induced by 1 kHz and 250 kHz femtosecond lasers,” Opt. Mater. Express1(4), 724–731 (2011).
    [CrossRef]
  7. H. Guillet de Chatellus and E. Freysz, “Characterization and dynamics of gratings induced in glasses by femtosecond pulses,” Opt. Lett.27(13), 1165–1167 (2002).
    [CrossRef] [PubMed]
  8. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express18(19), 19844–19859 (2010).
    [CrossRef] [PubMed]
  9. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004).
    [CrossRef]
  10. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol.22(1), 94–100 (2004).
    [CrossRef]
  11. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
    [CrossRef]
  12. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express1(4), 754–765 (2011).
    [CrossRef]
  13. Ch. Voigtländer, R. G. Becker, J. Thomas, D. Richter, A. Singh, A. Tünnermann, and S. Nolte, “Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront,” Opt. Mater. Express1(4), 633–642 (2011).
    [CrossRef]
  14. M. Bernier, S. Gagnon, and R. Vallée, “Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800nm,” Opt. Mater. Express1(5), 832–844 (2011).
    [CrossRef]
  15. M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
    [CrossRef]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2948 (1969).

2011 (5)

2010 (1)

2008 (1)

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

2007 (1)

2006 (1)

2004 (3)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol.22(1), 94–100 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
[CrossRef]

2003 (1)

J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003).
[CrossRef]

2002 (1)

1993 (1)

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2948 (1969).

Avanesyan, S. M.

J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003).
[CrossRef]

Becker, R. G.

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004).
[CrossRef]

Beresna, M.

Bernier, M.

Chahid-Erraji, A.

Chen, D.

Chen, Q.

Cheng, Y.

Dickinson, J. T.

J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003).
[CrossRef]

Ding, H.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004).
[CrossRef]

Eaton, S. M.

Ekimov, A. I.

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

Flytzanis, C.

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

Freysz, E.

Gagnon, S.

Ghanassi, M.

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

Grobnic, D.

Guillet de Chatellus, H.

Hache, F.

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

He, F.

Herman, P. R.

Jovanovic, N.

Kazansky, P. G.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2948 (1969).

Lancry, M.

Langford, S. C.

J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003).
[CrossRef]

Li, J.

Lin, G.

Lonzaga, J. B.

J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003).
[CrossRef]

Lu, P.

Luo, F.

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004).
[CrossRef]

Mihailov, S. J.

Nolte, S.

Poumellec, B.

Qiu, J.

Ricard, D.

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

Richter, D.

Schanne-Klein, M. C.

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

Singh, A.

Smelser, C. W.

Steel, M. J.

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Thomas, J.

Tünnermann, A.

Unruh, J.

Vallée, R.

Voigtländer, Ch.

Walker, R. B.

Williams, R. J.

Withford, M. J.

Yang, W.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Zhang, H.

Zhang, L.

Zhao, Q.

Appl. Phys. Lett. (1)

M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, and C. Flytzanis, “Time-resolved measurements of carrier recombination in experimental seconductor-doped glasses: confirmation of the role of Auger recombination,” Appl. Phys. Lett.62(1), 78–80 (1993).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2948 (1969).

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
[CrossRef]

J. Appl. Phys. (1)

J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys.94(7), 4332–4340 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The experimental set-up. D.M. stands for dichroic mirror.

Fig. 2
Fig. 2

Formation and relaxation of grating induced in SF59 for a peak power density of ~245 GW.cm−2. The fits of the grating formation and relaxation are presented in solid lines. They are fitted by the equations R(t) = R0[1-exp(-t/t)] and R(t) = R0(1/(At-B)) respectively.

Fig. 3
Fig. 3

(a) Formation and relaxation of a grating induced in SF59 versus the exposure time for a peak power density of ~245 GW.cm−2. (b) Evolution of the grating formation and relaxation versus the pump power density P for a 5 s exposure time. The inset presents the evolution of characteristic time t versus the pump power density. The characteristic time t has been computed considering the grating reflectivity evolves according to the equations R(t) = R0[1-exp(-t/t)]. The results of our fits are presented in solid lines.

Fig. 4
Fig. 4

(a) Evolution of the intensity diffracted He-Ne beam at millisecond time scale for 140, 315 and 700 GW.cm−2 pump peak power density. The inset presents the evolution of diffraction efficiency versus the order of pulses within the exciting pump pulse train for peak power density of 600 and 700 GW.cm−2 respectively. (b) (○) Evolution of the diffracted intensity recorded at steady state during pump pulse excitation. The femtosecond pump pulses are applied at t = 0 and t = 1 ms. (−−−): Fit of this data using the equation R(t)= R 0 [ 1exp( t τ ) ][ 1 AtB ]

Fig. 5
Fig. 5

(a) Evolution of the constant time t versus the number of exciting pulses. (b) Evolution of the constant time A−1 versus the number of exciting pulses. The data have been recorded for a pump peak power density of 245 GW.cm−2.

Fig. 6
Fig. 6

Change of the real Dnr and imaginary Dni part of the index of refraction in SF 59 glass with respect to the pump power density.

Fig. 7
Fig. 7

Evolution of the real Dnr (a) and imaginary Dni (b) part of the index of refraction in SF 59 glass. The insets present the evolution on a longer time scale.

Fig. 8
Fig. 8

Evolution of absorption spectrum of the SF 59 glass excited by different pump pulse peak power densities.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dN dt =ANC N 3 .
R(t)= R 0 [ 1exp( t τ ) ][ 1 AtB ].

Metrics