Abstract

We have demonstrated the nanopatterning of atomic layer deposited (ALD) Al:ZnO (AZO) films using electron beam lithography (EBL) for plasmonic waveguide applications. The influence of grains on repeatable planar nanostructures by nanolithography process was studied for annealed films in order to avoid effects of granularity. Our results demonstrate that the nanopatterning of AZO by the EBL technique is limited due to granularity of ALD grown AZO films. This finding suggests the limitations of ALD grown samples for optical applications where nanopatterns are fabricated by the EBL technique. Furthermore, the ALD grown films lose conductivity orders of magnitude on annealing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
    [CrossRef] [PubMed]
  2. Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
    [CrossRef]
  3. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
    [CrossRef]
  4. A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
    [CrossRef]
  5. O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
    [CrossRef]
  6. C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
    [CrossRef]
  7. S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C112(15), 6027–6032 (2008).
    [CrossRef]
  8. J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
    [CrossRef]
  9. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
    [CrossRef]
  10. M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
    [CrossRef]
  11. J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater.15(4), 1020–1028 (2003).
    [CrossRef]
  12. J. Tauc, Optical Properties of Solids, F. Abeles, ed. (North Holland Pub, Amsterdam, 1970), Vol. 22.
  13. E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag.22(179), 903–922 (1970).
    [CrossRef]
  14. B. K. Meyer, “Characterization of spin crossover crystal surface by AFM,” Phys. Status Solidi B24, 1231–1235 (2004).
  15. L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
    [CrossRef]
  16. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation,” J. Appl. Phys.83, 2631–2636 (1998).
  17. D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
    [CrossRef]

2012 (1)

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
[CrossRef]

2011 (3)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

2008 (3)

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C112(15), 6027–6032 (2008).
[CrossRef]

J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
[CrossRef]

2007 (2)

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
[CrossRef]

2005 (1)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
[CrossRef]

2004 (2)

B. K. Meyer, “Characterization of spin crossover crystal surface by AFM,” Phys. Status Solidi B24, 1231–1235 (2004).

L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
[CrossRef]

2003 (1)

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater.15(4), 1020–1028 (2003).
[CrossRef]

2000 (1)

M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
[CrossRef]

1998 (1)

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation,” J. Appl. Phys.83, 2631–2636 (1998).

1970 (1)

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag.22(179), 903–922 (1970).
[CrossRef]

Amelung, J.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Ayres, J. A.

J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
[CrossRef]

Bahoura, M.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
[CrossRef]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Bamiduro, O.

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
[CrossRef]

Ban, T.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation,” J. Appl. Phys.83, 2631–2636 (1998).

Barnakov, Yu. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Chandra, K. L.

J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
[CrossRef]

Chen, L.-Y.

L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
[CrossRef]

Chen, W.-H.

L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
[CrossRef]

Choi, H.

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

Davis, E. A.

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag.22(179), 903–922 (1970).
[CrossRef]

Dondapati, H.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
[CrossRef]

Elam, J. W.

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater.15(4), 1020–1028 (2003).
[CrossRef]

Eritt, M.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Fehse, K.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Fournier, C.

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

Franzen, S.

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C112(15), 6027–6032 (2008).
[CrossRef]

George, S. M.

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater.15(4), 1020–1028 (2003).
[CrossRef]

Gorman, C. B.

J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
[CrossRef]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Hårsta, A.

M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
[CrossRef]

Holloway, T.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
[CrossRef]

Hong, F. C.-N.

L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
[CrossRef]

Huang, Q.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Kim, H.-M.

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

Kim, K.-B.

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

Kim, S.-H.

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

Konda, R. B.

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
[CrossRef]

Kukli, K.

M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
[CrossRef]

Kwon, J.

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

Lee, D.-J.

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

Leo, K.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Leskelä, M.

M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
[CrossRef]

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Loeffler, F.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Luber, C.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

May, C.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Meyer, B. K.

B. K. Meyer, “Characterization of spin crossover crystal surface by AFM,” Phys. Status Solidi B24, 1231–1235 (2004).

Mott, N. F.

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag.22(179), 903–922 (1970).
[CrossRef]

Mundle, R.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
[CrossRef]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
[CrossRef]

Mustafa, H.

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
[CrossRef]

Na, J. S.

J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
[CrossRef]

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Ohya, Y.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation,” J. Appl. Phys.83, 2631–2636 (1998).

Parsons, G. N.

J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
[CrossRef]

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Pradhan, A. K.

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
[CrossRef]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
[CrossRef]

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
[CrossRef]

Ritala, M.

M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
[CrossRef]

Schuisky, M.

M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
[CrossRef]

Su, Y.-K.

L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
[CrossRef]

Tahar, R. B. H.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation,” J. Appl. Phys.83, 2631–2636 (1998).

Takahashi, Y.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation,” J. Appl. Phys.83, 2631–2636 (1998).

Toerker, M.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Tomita, Y.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Walzer, K.

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

Wang, J.-J.

L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
[CrossRef]

Williams, F.

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Adv. Funct. Mater. (1)

D.-J. Lee, H.-M. Kim, J. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater.21(3), 448–455 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett.85(23), 5628–5630 (2004).
[CrossRef]

Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, and Q. Huang, “Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates,” Appl. Phys. Lett.91(6), 063510 (2007).
[CrossRef]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Yu. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

A. K. Pradhan, T. Holloway, R. Mundle, H. Dondapati, and M. Bahoura, “Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons,” Appl. Phys. Lett.100(6), 061127 (2012).
[CrossRef]

O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al:ZnO films,” Appl. Phys. Lett.90(25), 252108 (2007).
[CrossRef]

Chem. Mater. (1)

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater.15(4), 1020–1028 (2003).
[CrossRef]

Chem. Vap. Deposition (1)

M. Schuisky, K. Kukli, M. Ritala, A. Hårsta, and M. Leskelä, “Atomic layer CVD in the Bi–Ti–O system,” Chem. Vap. Deposition6(3), 139–145 (2000).
[CrossRef]

J. Appl. Phys. (2)

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation,” J. Appl. Phys.83, 2631–2636 (1998).

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
[CrossRef]

J. Phys. Chem. C (2)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C112(15), 6027–6032 (2008).
[CrossRef]

J. S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, “Nanoencapsulation and stabilization of single-molecule/particle electronic nanoassemblies using low-temperature atomic layer deposition,” J. Phys. Chem. C112(51), 20510–20517 (2008).
[CrossRef]

Philos. Mag. (1)

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag.22(179), 903–922 (1970).
[CrossRef]

Phys. Status Solidi B (1)

B. K. Meyer, “Characterization of spin crossover crystal surface by AFM,” Phys. Status Solidi B24, 1231–1235 (2004).

Science (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films,” Semicond. Sci. Technol.23(8), 085019 (2008).
[CrossRef]

Other (1)

J. Tauc, Optical Properties of Solids, F. Abeles, ed. (North Holland Pub, Amsterdam, 1970), Vol. 22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD patterns of as-grown films (200 °C), and subsequently annealed at 300, 400, 500 and 600 °C of ALD grown AZO films.

Fig. 2
Fig. 2

(a) Pulse sequence used for one macro-cycle of Al:ZnO films by the ALD technique, and 3-diemesional AFM images of (b) as grown films at 200 °C, annealed films at (c) 400 °C, (d) 500 °C (e) 600 °C, and (f) shows the surface roughness of the film as a function of annealing temperature . The scale for the AFM images is 600 nm × 600 nm.

Fig. 3
Fig. 3

FE-SEM images of (a) as grown films at 200 °C, annealed films at (b) 400 °C, (c) 500 °C and (d) 600 °C. The scale bar for the SEM images is 200 nm.

Fig. 4
Fig. 4

(a) EBL patterns of periodic gratings in (a) as-grown films (200 °C), and subsequently annealed at (b) 400, (c) 500 and (d) 600 °C of ALD grown AZO films.

Fig. 5
Fig. 5

EBL patterns of Fresnel rings (a) as-grown films at 200 °C, and annealed at (b) 400, (c) 500 and (d) 600 °C of ALD grown AZO films.

Fig. 6
Fig. 6

The resistivity and optical band gap of ALD grown films as a function of annealing temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

αhν=A ( hν E g ) n
Δ E g =( h 2 8 m 0 * ) ( 3 π ) 2 3 n e 2 3

Metrics