Abstract

We have demonstrated successful regeneration of optical fibre Bragg gratings that have been loaded with helium as opposed to hydrogen. The high temperature stability of these gratings is shown to be comparable to the gratings regenerated using hydrogen – surviving temperatures in excess of 900 °C for over 4 hours. These results using an inert gas confirm our previous model where mechanical relaxations dominate regeneration. Consistent with this, He is also observed to play no local role in changing index modulation whilst increasing average index change during grating writing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Canning and S. Bandyopadhyay, “Thermally processing glass with nanoscale resolution,” Laser Growth and Processing of Photonic Devices, N. Vainos, ed. (Woodhouse Publishing, 2012).
  2. J. Canning, “Regenerated gratings for optical sensing in harsh environments,” (Invited talk) at Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), OSA’s Advanced Photonics Congress that Cheyenne Mountain Resort, Colorado Springs, Colorado, United States (2012).
  3. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett.33(16), 1917–1919 (2008).
    [CrossRef] [PubMed]
  4. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland)8(10), 6448–6452 (2008).
    [CrossRef]
  5. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express19(2), 1198–1206 (2011).
    [CrossRef] [PubMed]
  6. J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Euro. Opt. Soc. Rapid Publ.4, 09052 (2009).
    [CrossRef]
  7. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration,” Appl. Opt.50(17), 2519–2522 (2011).
    [CrossRef] [PubMed]
  8. K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
    [CrossRef]
  9. M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
    [CrossRef]
  10. F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” MOMAG2012 – 15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil (2012).
  11. K. Chen, T. Chen, J. B. Negley, D. Grobnic, S. J. Mihailov, and J. Canning, “Thermally regenerated fiber Bragg gratings in air-hole microstructured fibre,” (Invited talk) SPIE Defence, Security and Sensing, Orlando, United States (2011).
  12. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt.38(7), 1086–1095 (1999).
    [CrossRef] [PubMed]
  13. P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng.30(6), 780–789 (1991).
    [CrossRef]
  14. D. E. Swets, R. W. Lee, and R. C. Frank, “Diffusion coefficients of helium in fused quartz,” J. Chem. Phys.34(1), 17–22 (1961).
    [CrossRef]
  15. F. Bhakti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of in-fiber and out-fiber diffusion on central wavelength of UV-written long period gratings,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17, 1997 OSA Technical Series, paper BSuD2, pp. 55–57 (1997).
  16. J. Canning, H. R. Sørensen, and M. Kristensen, “Solid-state autocatalysis and oscillatory reactions in silicate glass systems,” Opt. Commun.260(2), 595–600 (2006).
    [CrossRef]
  17. H. R. Sørensen, J. Canning, and M. Kristensen, “Thermal hypersensitisation and grating evolution in Ge-doped optical fibre,” Opt. Express13(7), 2276–2281 (2005).
    [CrossRef] [PubMed]
  18. M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett.35(4), 586–588 (2010).
    [CrossRef] [PubMed]
  19. http://www.sciner.com/Opticsland/FS.htm

2012 (2)

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

2011 (2)

2010 (1)

2009 (1)

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Euro. Opt. Soc. Rapid Publ.4, 09052 (2009).
[CrossRef]

2008 (2)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland)8(10), 6448–6452 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett.33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

2006 (1)

J. Canning, H. R. Sørensen, and M. Kristensen, “Solid-state autocatalysis and oscillatory reactions in silicate glass systems,” Opt. Commun.260(2), 595–600 (2006).
[CrossRef]

2005 (1)

1999 (1)

1991 (1)

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng.30(6), 780–789 (1991).
[CrossRef]

1961 (1)

D. E. Swets, R. W. Lee, and R. C. Frank, “Diffusion coefficients of helium in fused quartz,” J. Chem. Phys.34(1), 17–22 (1961).
[CrossRef]

Aslund, M.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Euro. Opt. Soc. Rapid Publ.4, 09052 (2009).
[CrossRef]

Åslund, M. L.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett.35(4), 586–588 (2010).
[CrossRef] [PubMed]

Bandyopadhyay, S.

Bartelt, H.

Becker, M.

Biswas, P.

Brückner, S.

Canagasabey, A.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

Canning, J.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration,” Appl. Opt.50(17), 2519–2522 (2011).
[CrossRef] [PubMed]

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express19(2), 1198–1206 (2011).
[CrossRef] [PubMed]

M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett.35(4), 586–588 (2010).
[CrossRef] [PubMed]

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Euro. Opt. Soc. Rapid Publ.4, 09052 (2009).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland)8(10), 6448–6452 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett.33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

J. Canning, H. R. Sørensen, and M. Kristensen, “Solid-state autocatalysis and oscillatory reactions in silicate glass systems,” Opt. Commun.260(2), 595–600 (2006).
[CrossRef]

H. R. Sørensen, J. Canning, and M. Kristensen, “Thermal hypersensitisation and grating evolution in Ge-doped optical fibre,” Opt. Express13(7), 2276–2281 (2005).
[CrossRef] [PubMed]

Chojetzki, C.

Cook, K.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett.35(4), 586–588 (2010).
[CrossRef] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland)8(10), 6448–6452 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett.33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

Dasgupta, K.

de Oliveira, R. A.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

Feced, R.

Fenton, J.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Euro. Opt. Soc. Rapid Publ.4, 09052 (2009).
[CrossRef]

Frank, R. C.

D. E. Swets, R. W. Lee, and R. C. Frank, “Diffusion coefficients of helium in fused quartz,” J. Chem. Phys.34(1), 17–22 (1961).
[CrossRef]

Handerek, V. A.

Kanellopoulos, S. E.

Kristensen, M.

J. Canning, H. R. Sørensen, and M. Kristensen, “Solid-state autocatalysis and oscillatory reactions in silicate glass systems,” Opt. Commun.260(2), 595–600 (2006).
[CrossRef]

H. R. Sørensen, J. Canning, and M. Kristensen, “Thermal hypersensitisation and grating evolution in Ge-doped optical fibre,” Opt. Express13(7), 2276–2281 (2005).
[CrossRef] [PubMed]

Lancry, M.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

le Garff, G.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

Lee, R. W.

D. E. Swets, R. W. Lee, and R. C. Frank, “Diffusion coefficients of helium in fused quartz,” J. Chem. Phys.34(1), 17–22 (1961).
[CrossRef]

Lemaire, P. J.

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng.30(6), 780–789 (1991).
[CrossRef]

Lindner, E.

Liu, Y.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

Mihailov, S.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

Peng, G.-D.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

Raine, K. W.

Rothhardt, M.

Smelser, C.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

Sørensen, H. R.

J. Canning, H. R. Sørensen, and M. Kristensen, “Solid-state autocatalysis and oscillatory reactions in silicate glass systems,” Opt. Commun.260(2), 595–600 (2006).
[CrossRef]

H. R. Sørensen, J. Canning, and M. Kristensen, “Thermal hypersensitisation and grating evolution in Ge-doped optical fibre,” Opt. Express13(7), 2276–2281 (2005).
[CrossRef] [PubMed]

Stevenson, M.

Swets, D. E.

D. E. Swets, R. W. Lee, and R. C. Frank, “Diffusion coefficients of helium in fused quartz,” J. Chem. Phys.34(1), 17–22 (1961).
[CrossRef]

Appl. Opt. (2)

Int. J. Heat Mass Transfer (1)

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Transfer55(11–12), 3288–3294 (2012).
[CrossRef]

J. Chem. Phys. (1)

D. E. Swets, R. W. Lee, and R. C. Frank, “Diffusion coefficients of helium in fused quartz,” J. Chem. Phys.34(1), 17–22 (1961).
[CrossRef]

J. Euro. Opt. Soc. Rapid Publ. (1)

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Euro. Opt. Soc. Rapid Publ.4, 09052 (2009).
[CrossRef]

Opt. Commun. (1)

J. Canning, H. R. Sørensen, and M. Kristensen, “Solid-state autocatalysis and oscillatory reactions in silicate glass systems,” Opt. Commun.260(2), 595–600 (2006).
[CrossRef]

Opt. Eng. (1)

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng.30(6), 780–789 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre gratings,” Proc. SPIE8351, 835111 (2012).
[CrossRef]

Sensors (Basel Switzerland) (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland)8(10), 6448–6452 (2008).
[CrossRef]

Other (6)

J. Canning and S. Bandyopadhyay, “Thermally processing glass with nanoscale resolution,” Laser Growth and Processing of Photonic Devices, N. Vainos, ed. (Woodhouse Publishing, 2012).

J. Canning, “Regenerated gratings for optical sensing in harsh environments,” (Invited talk) at Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), OSA’s Advanced Photonics Congress that Cheyenne Mountain Resort, Colorado Springs, Colorado, United States (2012).

F. Bhakti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of in-fiber and out-fiber diffusion on central wavelength of UV-written long period gratings,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17, 1997 OSA Technical Series, paper BSuD2, pp. 55–57 (1997).

F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” MOMAG2012 – 15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil (2012).

K. Chen, T. Chen, J. B. Negley, D. Grobnic, S. J. Mihailov, and J. Canning, “Thermally regenerated fiber Bragg gratings in air-hole microstructured fibre,” (Invited talk) SPIE Defence, Security and Sensing, Orlando, United States (2011).

http://www.sciner.com/Opticsland/FS.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Growth curves for (a) Δnave and (b) Δnmod. Final spectra: (c) transmision and (d) reflection after grating inscription.

Fig. 2
Fig. 2

Reflection, R, or peak strength of gratings during thermal processing with corresponding temperature, T, profiles as a function of time t.

Fig. 3
Fig. 3

Transmission and reflection spectra after regeneration.

Fig. 4
Fig. 4

Reflection during progressive isothermal annealing and the corresponding thermal profile. Inset: Final reflection spectra at room temperature (each spectrum is normalized to its maximum value).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D H 2 =2.83× 10 4 exp(40.19/RT),c m 2 /s
D He =3.04× 10 4 exp(5580/RT),c m 2 /s

Metrics