Abstract

In this work, the fabrication of a Zirconia-Erbium co-Doped Fiber (Zr-EDF) and its application in the generation of non-linear effects as well as use in a compact pulsed fiber laser system is described. The Zr-EDF is fabricated by the Modified Chemical Vapor Deposition (MCVD) technique in combination with solution doping to incorporate the glass modifiers and nucleating agent. The resulting preforms are annealed and drawn into fiber strands with a 125.0 ± 0.5 µm diameter. Two Zr-EDFs, ZEr-A and ZEr-B, are fabricated with erbium ion concentrations of 2800 and 3888 ppm/wt and absorption rates of 14.5 and 18.3 dB/m at 980 nm respectively. Due to its higher erbium dopant concentration, a 4 m long ZEr-B is used to demonstrate the generation of the Four-Wave-Mixing (FWM) effect in the Zr-EDF. The measured FWM power levels agree well with theoretical predictions, giving a maximum FWM power - 45 dBm between 1558 nm to 1565 nm, and the generated sidebands are as predicted. The non-linear coefficient of ZEr-B is measured to be 14 W−1km−1, with chromatic and slope dispersion values of 28.45 ps/nm.km and 3.63 ps/nm2.km respectively. The ZEr-B is also used together with a graphene based saturable absorber to create a compact, passively Q-switched fiber laser. Short pulses with a pulse width of 8.8 µs and repetition rate of 9.15 kHz are generated at a pump power of 121.8 mW, with a maximum average output power of 161.35 µW and maximum pulse energy value of 17.64 nJ. The fabricated Zr-EDF has many potential applications in multi-wavelength generation as well as in the development of compact, pulsed laser sources.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol.5(1), 3–39 (1999).
    [CrossRef]
  2. R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag.40(5), 138–147 (2002).
    [CrossRef]
  3. M. Wasfi, “Optical fiber amplifiers – review,” Int. J. Commun. Netw. Inf. Secur.1, 42–47 (2009).
  4. D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  5. H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
    [CrossRef]
  6. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett.4(1), 69–72 (1992).
    [CrossRef]
  7. E. Yahel and A. Hardy, “Amplified spontaneous emission in high-power, Er3+/Yb3+ codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B20(6), 1198–1203 (2003).
    [CrossRef]
  8. M. J. Yadlowsky, E. M. Deliso, and V. L. Da Silva, “Optical fibers and amplifiers for WDM systems,” Proc. IEEE85(11), 1765–1779 (1997).
    [CrossRef]
  9. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glass,” Opt. Mater.5(3), 159–167 (1996).
    [CrossRef]
  10. D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter53(5), 2334–2344 (1996).
    [CrossRef] [PubMed]
  11. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber,” J. Lightwave Technol.28(20), 2919–2924 (2010).
    [CrossRef]
  12. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett.35(17), 2882–2884 (2010).
    [CrossRef] [PubMed]
  13. J. R. Armitage, “Spectral dependence of the small-signal gain around 1.5 μm in erbium doped silica fiber amplifiers,” IEEE J. Quantum Electron.26(3), 423–425 (1990).
    [CrossRef]
  14. B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991).
    [CrossRef]
  15. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
    [CrossRef]
  16. P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
    [CrossRef]
  17. R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross phase modulation and four-wave-mixing in high speed TDM systems,” Electron. Lett.35(18), 1576–1578 (1999).
    [CrossRef]
  18. I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998).
    [CrossRef]
  19. N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel: the ghost-pulse constraint,” IEEE Trans. Inf. Theory52(1), 64–77 (2006).
    [CrossRef]
  20. S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009).
    [CrossRef]
  21. X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
    [CrossRef]
  22. H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012).
    [CrossRef]
  23. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
    [CrossRef]
  24. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express18(8), 7714–7723 (2010).
    [CrossRef] [PubMed]
  25. W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
    [CrossRef]
  26. M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
    [CrossRef]
  27. H. Q. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, and S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt.35(19), 3347–3357 (1996).
    [CrossRef] [PubMed]
  28. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
    [CrossRef] [PubMed]
  29. A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
    [CrossRef]
  30. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13(20), 8025–8031 (2005).
    [CrossRef] [PubMed]
  31. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]

2012

H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012).
[CrossRef]

W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
[CrossRef]

2011

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

2010

2009

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
[CrossRef]

S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009).
[CrossRef]

M. Wasfi, “Optical fiber amplifiers – review,” Int. J. Commun. Netw. Inf. Secur.1, 42–47 (2009).

2008

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

2006

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel: the ghost-pulse constraint,” IEEE Trans. Inf. Theory52(1), 64–77 (2006).
[CrossRef]

2005

T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13(20), 8025–8031 (2005).
[CrossRef] [PubMed]

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

2004

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

2003

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

E. Yahel and A. Hardy, “Amplified spontaneous emission in high-power, Er3+/Yb3+ codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B20(6), 1198–1203 (2003).
[CrossRef]

2002

R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag.40(5), 138–147 (2002).
[CrossRef]

1999

G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol.5(1), 3–39 (1999).
[CrossRef]

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross phase modulation and four-wave-mixing in high speed TDM systems,” Electron. Lett.35(18), 1576–1578 (1999).
[CrossRef]

1998

I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998).
[CrossRef]

1997

M. J. Yadlowsky, E. M. Deliso, and V. L. Da Silva, “Optical fibers and amplifiers for WDM systems,” Proc. IEEE85(11), 1765–1779 (1997).
[CrossRef]

1996

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glass,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter53(5), 2334–2344 (1996).
[CrossRef] [PubMed]

H. Q. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, and S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt.35(19), 3347–3357 (1996).
[CrossRef] [PubMed]

1992

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett.4(1), 69–72 (1992).
[CrossRef]

1991

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991).
[CrossRef]

1990

J. R. Armitage, “Spectral dependence of the small-signal gain around 1.5 μm in erbium doped silica fiber amplifiers,” IEEE J. Quantum Electron.26(3), 423–425 (1990).
[CrossRef]

Ahmad, H.

H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012).
[CrossRef]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber,” J. Lightwave Technol.28(20), 2919–2924 (2010).
[CrossRef]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett.35(17), 2882–2884 (2010).
[CrossRef] [PubMed]

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
[CrossRef]

S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009).
[CrossRef]

Armitage, J. R.

J. R. Armitage, “Spectral dependence of the small-signal gain around 1.5 μm in erbium doped silica fiber amplifiers,” IEEE J. Quantum Electron.26(3), 423–425 (1990).
[CrossRef]

Awang, N. A.

H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012).
[CrossRef]

Bhadra, S. K.

Bjarklev, A.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991).
[CrossRef]

Blanc, W.

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Boyland, A. J.

Cao, W.-J.

W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
[CrossRef]

Casperson, L. W.

Clarkson, W.

Da Silva, V. L.

M. J. Yadlowsky, E. M. Deliso, and V. L. Da Silva, “Optical fibers and amplifiers for WDM systems,” Proc. IEEE85(11), 1765–1779 (1997).
[CrossRef]

Dai, S.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

Das, S.

Deliso, E. M.

M. J. Yadlowsky, E. M. Deliso, and V. L. Da Silva, “Optical fibers and amplifiers for WDM systems,” Proc. IEEE85(11), 1765–1779 (1997).
[CrossRef]

Dong, X.

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

Dussardier, B.

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Dybdal, K.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991).
[CrossRef]

Essiambre, R.-J.

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross phase modulation and four-wave-mixing in high speed TDM systems,” Electron. Lett.35(18), 1576–1578 (1999).
[CrossRef]

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Ferrari, A. C.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Gill, D. M.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter53(5), 2334–2344 (1996).
[CrossRef] [PubMed]

Gregory, K. W.

Hamzah, A.

Hardy, A.

Harun, S.

S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009).
[CrossRef]

Harun, S. W.

H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012).
[CrossRef]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber,” J. Lightwave Technol.28(20), 2919–2924 (2010).
[CrossRef]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett.35(17), 2882–2884 (2010).
[CrossRef] [PubMed]

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
[CrossRef]

Hasan, T.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Hu, L.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

Huri, N. A. D.

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett.4(1), 69–72 (1992).
[CrossRef]

Itoga, E.

Jiang, Z.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

Jovanovic, N.

Kalita, M. P.

Karásek, M.

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Kashyap, N.

N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel: the ghost-pulse constraint,” IEEE Trans. Inf. Theory52(1), 64–77 (2006).
[CrossRef]

Kataura, H.

Kawanishi, S.

I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998).
[CrossRef]

Kazaoui, S.

Keiser, G. E.

G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol.5(1), 3–39 (1999).
[CrossRef]

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glass,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Kononenko, V. V.

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

Konov, V. I.

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

Larsen, C. C.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991).
[CrossRef]

Latif, A. A.

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
[CrossRef]

Lu, C.

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

Lu, F.

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

Luo, A.-P.

W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
[CrossRef]

Luo, Z.-C.

W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
[CrossRef]

Mamedov, A. A.

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

Marshall, G. D.

McCaughan, L.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter53(5), 2334–2344 (1996).
[CrossRef] [PubMed]

Mikkelsen, B.

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross phase modulation and four-wave-mixing in high speed TDM systems,” Electron. Lett.35(18), 1576–1578 (1999).
[CrossRef]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Minami, N.

Minoshima, K.

Miyashita, K.

Nilsson, J.

Pal, M.

Parvizi, R.

S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009).
[CrossRef]

Pashinin, V. P.

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

Paul, M. C.

Pedersen, B.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991).
[CrossRef]

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Polman, A.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glass,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Popa, D.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Povlsen, J. H.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol.9(9), 1105–1112 (1991).
[CrossRef]

Prahl, S. A.

Ramaswami, R.

R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag.40(5), 138–147 (2002).
[CrossRef]

Raybon, G.

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross phase modulation and four-wave-mixing in high speed TDM systems,” Electron. Lett.35(18), 1576–1578 (1999).
[CrossRef]

Richardson, D.

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Sahu, J. K.

Sakakibara, Y.

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Schibli, T. R.

Shahi, S.

S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009).
[CrossRef]

Shake, I.

I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998).
[CrossRef]

Shangguan, H. Q.

Shearin, A.

Siegel, P. H.

N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel: the ghost-pulse constraint,” IEEE Trans. Inf. Theory52(1), 64–77 (2006).
[CrossRef]

Siniaeva, M. L.

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

Siniavsky, M. N.

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glass,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Sun, Z.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Takara, H.

I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998).
[CrossRef]

Thambiratnam, K.

H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012).
[CrossRef]

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
[CrossRef]

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett.4(1), 69–72 (1992).
[CrossRef]

Tokumoto, M.

Torrisi, F.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Vardy, A.

N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel: the ghost-pulse constraint,” IEEE Trans. Inf. Theory52(1), 64–77 (2006).
[CrossRef]

Wang, F.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Wang, H.-Y.

W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
[CrossRef]

Wasfi, M.

M. Wasfi, “Optical fiber amplifiers – review,” Int. J. Commun. Netw. Inf. Secur.1, 42–47 (2009).

Wen, L.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Williams, R. J.

Withford, M. J.

Wright, J. C.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter53(5), 2334–2344 (1996).
[CrossRef] [PubMed]

Xu, W.-C.

W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
[CrossRef]

Yadlowsky, M. J.

M. J. Yadlowsky, E. M. Deliso, and V. L. Da Silva, “Optical fibers and amplifiers for WDM systems,” Proc. IEEE85(11), 1765–1779 (1997).
[CrossRef]

Yahel, E.

Yamabayashi, Y.

I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998).
[CrossRef]

Yang, J.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

Yang, X. F.

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

Yoo, S.

Zhang, S.

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

Zhou, X.

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

Zhou, Y.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

Zulkifli, M. Z.

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Electron. Lett.

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross phase modulation and four-wave-mixing in high speed TDM systems,” Electron. Lett.35(18), 1576–1578 (1999).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett.34(22), 2152–2154 (1998).
[CrossRef]

IEEE Commun. Mag.

R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag.40(5), 138–147 (2002).
[CrossRef]

IEEE J. Quantum Electron.

J. R. Armitage, “Spectral dependence of the small-signal gain around 1.5 μm in erbium doped silica fiber amplifiers,” IEEE J. Quantum Electron.26(3), 423–425 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

X. F. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multi-wavelength erbium doped fiber laser with 0.8 nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett.17(12), 2538–2540 (2005).
[CrossRef]

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett.4(1), 69–72 (1992).
[CrossRef]

IEEE Trans. Inf. Theory

N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel: the ghost-pulse constraint,” IEEE Trans. Inf. Theory52(1), 64–77 (2006).
[CrossRef]

Int. J. Commun. Netw. Inf. Secur.

M. Wasfi, “Optical fiber amplifiers – review,” Int. J. Commun. Netw. Inf. Secur.1, 42–47 (2009).

J. Appl. Phys.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys.93(2), 977–983 (2003).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, and K. Thambiratnam, “Four-wave-mixing in zirconia-yttria-aluminum erbium codoped silica fiber,” J. Eur. Opt. Soc. Rapid Publ.7, 12011 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser Phys.

M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, A. A. Mamedov, V. I. Konov, and V. V. Kononenko, “Laser ablation of dental materials using microsecond Nd:YAG laser,” Laser Phys.19(5), 1056–1060 (2009).
[CrossRef]

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength brillouin/erbium fiber laser co-pump with Raman source,” Laser Phys.19(12), 2188–2193 (2009).
[CrossRef]

Laser Phys. Lett.

S. Harun, R. Parvizi, S. Shahi, and H. Ahmad, “Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect,” Laser Phys. Lett.6(11), 813–815 (2009).
[CrossRef]

W.-J. Cao, H.-Y. Wang, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett.9(1), 54–58 (2012).
[CrossRef]

Nat. Nanotechnol.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Nat. Photonics

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol.5(1), 3–39 (1999).
[CrossRef]

Opt. Lett.

Opt. Mater.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glass,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Opt. Quantum Electron.

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical modeling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Phys. Rev. B Condens. Matter

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter53(5), 2334–2344 (1996).
[CrossRef] [PubMed]

Phys. Status Solidi B

A. G. Rozhin, V. Scardaci, F. Wang, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Generation of ultra-fast laser pulses using nanotube mode-lockers,” Phys. Status Solidi B243(13), 3551–3555 (2006).
[CrossRef]

Proc. IEEE

M. J. Yadlowsky, E. M. Deliso, and V. L. Da Silva, “Optical fibers and amplifiers for WDM systems,” Proc. IEEE85(11), 1765–1779 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Setup of the MCVD system and (b) the formation of the silica preform.

Fig. 2
Fig. 2

The microstructure of the core region of the (a) ZEr-A preform and (b) the ZEr-B preform.

Fig. 3
Fig. 3

(a) Fluorescence curve of ZEr-A and ZEr-B annealed preforms and drawn fibers, and (b) decay curves of ZEr-A (above) and ZEr-B (below). (Figures used with permission (these figures are reproduced and modified with the permission of the publisher of [22].))

Fig. 4
Fig. 4

Experimental setup for FWM generation and measurement in the Zr-EDF (a similar configuration as in [22]).

Fig. 5
Fig. 5

(a) Theoretical and actual values of PFWM against different Pp wavelengths, and (b) generation of idler wavelengths C and S at different Ps wavelengths. (These figures are reproduced with the permission of the publisher of [22].)

Fig. 6
Fig. 6

(a) Setup of the passively Q-switched ZEr-B fiber ring laser using a graphene based SA, and (b) the setup for the deposition of the graphene layer onto the fiber ferrule.

Fig. 7
Fig. 7

Q-switched pulse width (left) and pulse train (right) obtained at a pump power of 121.8 mW.

Fig. 8
Fig. 8

(a) Repetition rate and pulse width of the ZEr-B Q-switched fiber laser against different pump powers and (b) average output power and pulse energy of the ZEr-B Q-switched fiber laser against different pump powers.

Tables (2)

Tables Icon

Table 1 Dopant Concentration within Preform Core Region (ZEr-A and ZEr-B)

Tables Icon

Table 2 Physical Characteristics of the Completed Fibers (ZEr-A and ZEr-B)a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ new_signal =2 λ pump λ signal , λ new_signal =2 λ pump + λ signal

Metrics