Abstract

We report on fabrication and optical characterization of GaAs nanopillar (NP) arrays, obtained using a combination of low-cost mask generation by self-assembled silica particles (nanosphere lithography) and dry etching. Tapered structures (conical and frustum NP arrays) are fabricated by appropriate optimization of process parameters. Significant suppression of surface reflectance is observed for both geometries over a broad wavelength range. Simulations, based on finite difference time domain (FDTD) method, show good agreement with reflectivity measurements and serve as a guideline for design of NPs and understanding their interaction with light. A combination of wet chemical etching and sulfur–based passivation of GaAs NPs, results in more than one order of magnitude enhancement in PL intensity and recovery of PL line-width, which is very promising for photovoltaic applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
    [CrossRef]
  2. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
    [CrossRef] [PubMed]
  3. S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
    [CrossRef] [PubMed]
  4. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  5. L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
    [CrossRef] [PubMed]
  6. J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
    [CrossRef] [PubMed]
  7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  8. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
    [CrossRef] [PubMed]
  9. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
    [CrossRef] [PubMed]
  10. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
    [CrossRef] [PubMed]
  11. P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
    [CrossRef] [PubMed]
  12. M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
    [CrossRef] [PubMed]
  13. S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011).
    [CrossRef] [PubMed]
  14. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
    [CrossRef]
  15. M. Yamaguchi, “Radiation-resistant solar cells for space use,” Sol. Energy Mater. Sol. Cells68(1), 31–53 (2001).
    [CrossRef]
  16. N. Tajik, C. E. Chia, and R. R. LaPierre, “Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires,” Appl. Phys. Lett.100(20), 203122 (2012).
    [CrossRef]
  17. P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
    [CrossRef] [PubMed]
  18. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
    [CrossRef] [PubMed]
  19. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
    [CrossRef]
  20. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
    [CrossRef] [PubMed]
  21. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express18(26), 27589–27605 (2010).
    [CrossRef] [PubMed]
  22. E. D. Kosten, E. L. Warren, and H. A. Atwater, “Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit,” Opt. Express19(4), 3316–3331 (2011).
    [CrossRef] [PubMed]
  23. V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, “Raman scattering study of surface barriers in GaAs passivated in alcoholic sulfide solutions,” J. Appl. Phys.82(5), 2640 (1997).
    [CrossRef]
  24. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Intense internal and external fluorescence as solar cells approach the Shockley-Queisser efficiency limit,” arXiv:1106.1603 [physics.optics] (2011).
  25. A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
    [CrossRef]
  26. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
    [CrossRef]
  27. M. T. Sheldon, C. N. Eisler, and H. A. Atwater, “GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability,” Adv. Energy Mater.2(3), 339–344 (2012).
    [CrossRef]
  28. N. Tajik, C. M. Haapamaki, and R. R. LaPierre, “Photoluminescence model of sulfur passivated p-InP nanowires,” Nanotechnology23(31), 315703 (2012).
    [CrossRef] [PubMed]
  29. S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:.
    [CrossRef]

2012

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

N. Tajik, C. E. Chia, and R. R. LaPierre, “Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires,” Appl. Phys. Lett.100(20), 203122 (2012).
[CrossRef]

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

M. T. Sheldon, C. N. Eisler, and H. A. Atwater, “GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability,” Adv. Energy Mater.2(3), 339–344 (2012).
[CrossRef]

N. Tajik, C. M. Haapamaki, and R. R. LaPierre, “Photoluminescence model of sulfur passivated p-InP nanowires,” Nanotechnology23(31), 315703 (2012).
[CrossRef] [PubMed]

S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:.
[CrossRef]

2011

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

E. D. Kosten, E. L. Warren, and H. A. Atwater, “Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit,” Opt. Express19(4), 3316–3331 (2011).
[CrossRef] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011).
[CrossRef] [PubMed]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

2010

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express18(26), 27589–27605 (2010).
[CrossRef] [PubMed]

2009

2008

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

2007

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

2006

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

2001

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

M. Yamaguchi, “Radiation-resistant solar cells for space use,” Sol. Energy Mater. Sol. Cells68(1), 31–53 (2001).
[CrossRef]

1997

V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, “Raman scattering study of surface barriers in GaAs passivated in alcoholic sulfide solutions,” J. Appl. Phys.82(5), 2640 (1997).
[CrossRef]

1961

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Anand, S.

S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:.
[CrossRef]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011).
[CrossRef] [PubMed]

Anttu, N.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Arif, R. A.

Atwater, H. A.

M. T. Sheldon, C. N. Eisler, and H. A. Atwater, “GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability,” Adv. Energy Mater.2(3), 339–344 (2012).
[CrossRef]

E. D. Kosten, E. L. Warren, and H. A. Atwater, “Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit,” Opt. Express19(4), 3316–3331 (2011).
[CrossRef] [PubMed]

Bae, J.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Bakkers, E. P.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Bessolov, V. N.

V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, “Raman scattering study of surface barriers in GaAs passivated in alcoholic sulfide solutions,” J. Appl. Phys.82(5), 2640 (1997).
[CrossRef]

Borgström, M. T.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

Castro-Camus, E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

Chang-Hasnain, C.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Chen, R.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Chia, A. C. E.

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

Chia, C. E.

N. Tajik, C. E. Chia, and R. R. LaPierre, “Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires,” Appl. Phys. Lett.100(20), 203122 (2012).
[CrossRef]

Chuang, L. C.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Comedi, D.

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Dang, C. H.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Deppert, K.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

Diedenhofen, S. L.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Ee, Y.-K.

Eisler, C. N.

M. T. Sheldon, C. N. Eisler, and H. A. Atwater, “GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability,” Adv. Energy Mater.2(3), 339–344 (2012).
[CrossRef]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Fält, S.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Fu, L.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gilchrist, J. F.

Gómez Rivas, J.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Grzela, G.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Haapamaki, C. M.

N. Tajik, C. M. Haapamaki, and R. R. LaPierre, “Photoluminescence model of sulfur passivated p-InP nanowires,” Nanotechnology23(31), 315703 (2012).
[CrossRef] [PubMed]

Heurlin, M.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Jagadish, C.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

Janssen, O. T.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Jin Choi, Y.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Johnston, M. B.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

Kim, H.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Ko, W. S.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

Kosten, E. D.

Kuech, T. F.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Kumnorkaew, P.

Kupec, J.

LaPierre, R. R.

N. Tajik, C. M. Haapamaki, and R. R. LaPierre, “Photoluminescence model of sulfur passivated p-InP nanowires,” Nanotechnology23(31), 315703 (2012).
[CrossRef] [PubMed]

N. Tajik, C. E. Chia, and R. R. LaPierre, “Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires,” Appl. Phys. Lett.100(20), 203122 (2012).
[CrossRef]

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

Lebedev, M. V.

V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, “Raman scattering study of surface barriers in GaAs passivated in alcoholic sulfide solutions,” J. Appl. Phys.82(5), 2640 (1997).
[CrossRef]

Li, Y.

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

Lin Wang, Z.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Liu, G.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Lloyd-Hughes, J.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

Magnusson, M. H.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Mawst, L. J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Merchant, S. K. E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

Mi, Z.

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

Moewe, M.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Naureen, S.

S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:.
[CrossRef]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011).
[CrossRef] [PubMed]

Ng, K. W.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Nurmikko, A.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Park, J. H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Pistol, M.-E.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Samuelson, L.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

Sanatinia, R.

S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:.
[CrossRef]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011).
[CrossRef] [PubMed]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Sedgwick, F. G.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Shahid, N.

S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:.
[CrossRef]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011).
[CrossRef] [PubMed]

Sheldon, M. T.

M. T. Sheldon, C. N. Eisler, and H. A. Atwater, “GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability,” Adv. Energy Mater.2(3), 339–344 (2012).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Stoop, R. L.

Swillo, M.

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

Tajik, N.

N. Tajik, C. E. Chia, and R. R. LaPierre, “Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires,” Appl. Phys. Lett.100(20), 203122 (2012).
[CrossRef]

N. Tajik, C. M. Haapamaki, and R. R. LaPierre, “Photoluminescence model of sulfur passivated p-InP nanowires,” Nanotechnology23(31), 315703 (2012).
[CrossRef] [PubMed]

Tan, H. H.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

Tansu, N.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Tirado, M.

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

Tong, H.

Tran, T.-T. D.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

Warren, E. L.

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Wickert, P.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

Witzigmann, B.

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Wu, P. M.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Xu, H. Q.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Yamaguchi, M.

M. Yamaguchi, “Radiation-resistant solar cells for space use,” Sol. Energy Mater. Sol. Cells68(1), 31–53 (2001).
[CrossRef]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Zahn, D. R. T.

V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, “Raman scattering study of surface barriers in GaAs passivated in alcoholic sulfide solutions,” J. Appl. Phys.82(5), 2640 (1997).
[CrossRef]

Zhang, J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Zhang, X.-M.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Zhang, Y.

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Zhao, H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Zhao, S.

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

ACS Nano

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Adv. Energy Mater.

M. T. Sheldon, C. N. Eisler, and H. A. Atwater, “GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability,” Adv. Energy Mater.2(3), 339–344 (2012).
[CrossRef]

Adv. Funct. Mater.

S. Naureen, N. Shahid, R. Sanatinia, and S. Anand, “Top-down fabrication of high quality III-V nanostructures by monolayer controlled sculpting and simultaneous passivation,” Adv. Funct. Mater.2012, (2012), doi:.
[CrossRef]

Appl. Phys. Lett.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett.89(23), 232102 (2006).
[CrossRef]

N. Tajik, C. E. Chia, and R. R. LaPierre, “Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires,” Appl. Phys. Lett.100(20), 203122 (2012).
[CrossRef]

J. Appl. Phys.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, “Electrical transport and optical model of GaAs-AlInP core-shell nanowires,” J. Appl. Phys.111(9), 094319 (2012).
[CrossRef]

V. N. Bessolov, M. V. Lebedev, and D. R. T. Zahn, “Raman scattering study of surface barriers in GaAs passivated in alcoholic sulfide solutions,” J. Appl. Phys.82(5), 2640 (1997).
[CrossRef]

J. Phys. D Appl. Phys.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Langmuir

P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Nano Lett.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett.11(5), 2028–2031 (2011).
[CrossRef] [PubMed]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett.11(11), 4805–4811 (2011).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett.11(2), 385–390 (2011).
[CrossRef] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Nanotechnology

N. Tajik, C. M. Haapamaki, and R. R. LaPierre, “Photoluminescence model of sulfur passivated p-InP nanowires,” Nanotechnology23(31), 315703 (2012).
[CrossRef] [PubMed]

J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, and Z. Lin Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology21(9), 095502 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

Nat. Photonics

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Nature

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Opt. Express

Science

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

M. Yamaguchi, “Radiation-resistant solar cells for space use,” Sol. Energy Mater. Sol. Cells68(1), 31–53 (2001).
[CrossRef]

Other

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Intense internal and external fluorescence as solar cells approach the Shockley-Queisser efficiency limit,” arXiv:1106.1603 [physics.optics] (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a)-(c): Schematic illustration of the GaAs nanopillar (NP) fabrication process steps. (a) Dispersed SiO2 colloidal particles on GaAs surface (b) Size reduction (by RIE) of silica colloidal particles dispersed on GaAs surface. (b) Anisotropic etching to produce GaAs NP by ICP-RIE (Cl2 /H2 /CH4 chemistry) using silica particles as masks. (d) Representative SEM images (top view) of hexagonal close-packed array of silica particles after dispersion and (e) after size reduction. (f) Cross sectional SEM image of the fabricated GaAs NP array. (g) Cross sectional SEM image of different GaAs NP geometries. Scale bars represent 200 nm.

Fig. 2
Fig. 2

Total reflectance (specular + diffuse) of the frustum GaAs NP array and that of the bare GaAs substrate measured using an integrating sphere.

Fig. 3
Fig. 3

Dependence of the measured reflectance spectra (a) and 3D FDTD simulated (b) reflectance of two different geometries of GaAs NP array samples (conical and frustum), with typical period of 500 nm, on the wavelength of light; the dashed black lines show the measured and simulated data for the frustum NP array and the solid lines that of the conical NP array. The measurements were carried out in backscattering geometry with a 5 × objective and NA of 0.13.

Fig. 4
Fig. 4

Comparison of room temperature PL intensity of as-etched GaAs NP array sample and the ones after different types of post-treatments: citric acid (red line), sulfur passivation (S) (blue line), both citric acid and sulfur passivation (Citric + S) (green line). The passivation effect of combined citric acid and sulfur treatments can be noted by the PL yield which is about 10 times.

Fig. 5
Fig. 5

Comparison of normalized room temperature PL spectra of as-etched GaAs NP array sample and the ones after different types of post-treatments. The bare epi grown sample PL spectra is also plotted as the reference. The linewidths of the treated samples are very close to the epi-grown reference sample, which indicate the passivation effect.

Metrics