Abstract

The creation of fiber Bragg gratings (FBGs) in optical fibers by laser irradiation causes the formation of defects in the modified glass. We have used confocal fluorescence spectroscopy to identify the location and types of defects formed after writing FBGs with the femtosecond laser phase mask technique. Our results show that non-bridging oxygen hole centers (NBOHCs) and self-trapped excitons (Eδ’) are formed throughout all-silica core Sumitomo Z-fiber. Similar defects are observed for Ge-doped silica fiber, Corning SMF-28, but in this case the relative concentrations of NBOHC and Eδ’ vary from the core to the cladding. In both fibers, hydrogen loading prior to irradiation appears to passivate the defects except in the Ge-doped core where the NBOHC defects persist.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
    [CrossRef]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
    [CrossRef]
  3. T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
    [CrossRef]
  4. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004).
    [CrossRef] [PubMed]
  5. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express1(4), 754–765 (2011).
    [CrossRef]
  6. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
    [CrossRef]
  7. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett.29(18), 2127–2129 (2004).
    [CrossRef] [PubMed]
  8. B. L. Zhang and K. Raghavachari, “Microscopic reaction mechanisms in hydrogen-loaded germanosilicate fibers: formation of divalent Ge defects,” Phys. Rev. B Condens. Matter51(12), 7946–7949 (1995).
    [CrossRef] [PubMed]
  9. B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
    [CrossRef]
  10. M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
    [CrossRef]
  11. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B24(7), 1627–1632 (2007).
    [CrossRef]
  12. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13(14), 5377–5386 (2005).
    [CrossRef] [PubMed]
  13. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett.27(10), 809–811 (2002).
    [CrossRef] [PubMed]
  14. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001).
    [CrossRef]
  15. L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
    [CrossRef]
  16. S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
    [CrossRef]
  17. Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
    [CrossRef]
  18. M. Mizuguchi, L. Skuja, H. Hosono, and T. Ogawa, “Photochemical processes induced by 157-nm light in H2-impregnated glassy SiO2:OH,” Opt. Lett.24(13), 863–865 (1999).
    [CrossRef] [PubMed]
  19. K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000).
    [CrossRef]
  20. M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998).
    [CrossRef]
  21. D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses,” J. Lumin.101(1-2), 23–33 (2003).
    [CrossRef]
  22. K. Awazu, K. Muta, and H. Kawazoe, “Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2:GeO2 fibers,” J. Appl. Phys.74(4), 2237–2240 (1993).
    [CrossRef]

2011 (1)

2007 (1)

2005 (1)

2004 (4)

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett.29(18), 2127–2129 (2004).
[CrossRef] [PubMed]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses,” J. Lumin.101(1-2), 23–33 (2003).
[CrossRef]

2002 (2)

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
[CrossRef]

J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett.27(10), 809–811 (2002).
[CrossRef] [PubMed]

2001 (1)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001).
[CrossRef]

2000 (3)

L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000).
[CrossRef]

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

1999 (2)

M. Mizuguchi, L. Skuja, H. Hosono, and T. Ogawa, “Photochemical processes induced by 157-nm light in H2-impregnated glassy SiO2:OH,” Opt. Lett.24(13), 863–865 (1999).
[CrossRef] [PubMed]

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

1998 (1)

M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998).
[CrossRef]

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

1995 (1)

B. L. Zhang and K. Raghavachari, “Microscopic reaction mechanisms in hydrogen-loaded germanosilicate fibers: formation of divalent Ge defects,” Phys. Rev. B Condens. Matter51(12), 7946–7949 (1995).
[CrossRef] [PubMed]

1994 (1)

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

1993 (1)

K. Awazu, K. Muta, and H. Kawazoe, “Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2:GeO2 fibers,” J. Appl. Phys.74(4), 2237–2240 (1993).
[CrossRef]

Albert, J.

J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett.27(10), 809–811 (2002).
[CrossRef] [PubMed]

M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998).
[CrossRef]

Awazu, K.

M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998).
[CrossRef]

K. Awazu, K. Muta, and H. Kawazoe, “Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2:GeO2 fibers,” J. Appl. Phys.74(4), 2237–2240 (1993).
[CrossRef]

Bado, P.

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Bigelow, N. P.

D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses,” J. Lumin.101(1-2), 23–33 (2003).
[CrossRef]

Boudrioua, A.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

Boukenter, A.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

Brebner, J. L.

M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Cerullo, G.

Chan, J. W.

Chen, K. P.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000).
[CrossRef]

Chiodo, N.

Della Valle, G.

Ding, H.

Essid, M.

M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998).
[CrossRef]

Florea, C.

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Fokine, M.

Fujimaki, M.

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Girard, S.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

Greene, B. I.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Grobnic, D.

Guttler, D.

L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
[CrossRef]

Herman, P. R.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000).
[CrossRef]

Hirano, M.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
[CrossRef]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001).
[CrossRef]

Hirao, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Hosono, H.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
[CrossRef]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001).
[CrossRef]

L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
[CrossRef]

M. Mizuguchi, L. Skuja, H. Hosono, and T. Ogawa, “Photochemical processes induced by 157-nm light in H2-impregnated glassy SiO2:OH,” Opt. Lett.24(13), 863–865 (1999).
[CrossRef] [PubMed]

Ikuta, Y.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Kajihara, K.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
[CrossRef]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001).
[CrossRef]

Kasahara, T.

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Kawazoe, H.

K. Awazu, K. Muta, and H. Kawazoe, “Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2:GeO2 fibers,” J. Appl. Phys.74(4), 2237–2240 (1993).
[CrossRef]

Kikugawa, S.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
[CrossRef]

Killi, A.

Kopf, D.

Kosinski, S. G.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Krol, D. M.

W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B24(7), 1627–1632 (2007).
[CrossRef]

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Laporta, P.

Lederer, M.

Lemaire, P. J.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Lu, P.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express1(4), 754–765 (2011).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
[CrossRef]

Margulis, W.

Maynard, R.

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Meunier, J.-P.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

Mihailov, S. J.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Miyazaki, N.

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Mizuguchi, M.

L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
[CrossRef]

M. Mizuguchi, L. Skuja, H. Hosono, and T. Ogawa, “Photochemical processes induced by 157-nm light in H2-impregnated glassy SiO2:OH,” Opt. Lett.24(13), 863–865 (1999).
[CrossRef] [PubMed]

Morgner, U.

Muta, K.

K. Awazu, K. Muta, and H. Kawazoe, “Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2:GeO2 fibers,” J. Appl. Phys.74(4), 2237–2240 (1993).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Ogawa, T.

Ohki, Y.

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Osellame, R.

Ouerdane, Y.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

Poulios, D. P.

D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses,” J. Lumin.101(1-2), 23–33 (2003).
[CrossRef]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Raghavachari, K.

B. L. Zhang and K. Raghavachari, “Microscopic reaction mechanisms in hydrogen-loaded germanosilicate fibers: formation of divalent Ge defects,” Phys. Rev. B Condens. Matter51(12), 7946–7949 (1995).
[CrossRef] [PubMed]

Reichman, W. J.

Saeta, P. N.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Said, A. A.

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Shimoto, S.

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Sikorski, T.

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Silin, A.

L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
[CrossRef]

Skuja, L.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001).
[CrossRef]

L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
[CrossRef]

M. Mizuguchi, L. Skuja, H. Hosono, and T. Ogawa, “Photochemical processes induced by 157-nm light in H2-impregnated glassy SiO2:OH,” Opt. Lett.24(13), 863–865 (1999).
[CrossRef] [PubMed]

Smelser, C. W.

Soo Seol, K.

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Spoonhower, J. P.

D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses,” J. Lumin.101(1-2), 23–33 (2003).
[CrossRef]

Svelto, O.

Taccheo, S.

Tam, R.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000).
[CrossRef]

Tokuhiro, S.

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Vincent, B.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express1(4), 754–765 (2011).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Winick, K. A.

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Zhang, B. L.

B. L. Zhang and K. Raghavachari, “Microscopic reaction mechanisms in hydrogen-loaded germanosilicate fibers: formation of divalent Ge defects,” Phys. Rev. B Condens. Matter51(12), 7946–7949 (1995).
[CrossRef] [PubMed]

Zhang, J.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001).
[CrossRef]

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004).
[CrossRef]

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Electron. Lett. (2)

T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004).
[CrossRef]

J. Appl. Phys. (2)

M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998).
[CrossRef]

K. Awazu, K. Muta, and H. Kawazoe, “Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2:GeO2 fibers,” J. Appl. Phys.74(4), 2237–2240 (1993).
[CrossRef]

J. Lumin. (2)

D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses,” J. Lumin.101(1-2), 23–33 (2003).
[CrossRef]

L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. L. Zhang and K. Raghavachari, “Microscopic reaction mechanisms in hydrogen-loaded germanosilicate fibers: formation of divalent Ge defects,” Phys. Rev. B Condens. Matter51(12), 7946–7949 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

White light transmission images of fs-FBG written in non-hydrogen loaded SMF-28 fiber viewed from the side through immersion oil (a) and viewed through a cleaved end (b). The dotted line in 1b highlights the modified region of the fiber. The core diameter is ~8.2 um in both images.

Fig. 2
Fig. 2

Fluorescence spectra from Sumitomo Z-Fiber (all-silica-core) without (a) and with (b) hydrogen loading. The solid curve in each set represents the fluorescence from the core, while the dashed curve is the signal from the cladding.

Fig. 3
Fig. 3

Defect fluorescence from modified material in the core (solid curve) and cladding (dashed curve) of a non-hydrogen loaded SMF-28 fs-FBG. The relative intensity of the 530 nm and 650 nm fluorescence is dependent on the location within the fiber itself.

Fig. 4
Fig. 4

Normalized maps of the fluorescence intensity from the 530 nm (a) and 650-660 nm (b) peaks in SMF-28 fiber without hydrogen loading. The small dashed circle represents the core (~8.2 um diameter) and the large dotted circle represents the edge of the cladding (125 um diameter).

Fig. 5
Fig. 5

Defect fluorescence from modified material in the core (solid curve), core/cladding interface (dotted curve), and modified cladding (dashed curve) in a hydrogen loaded SMF-28 fiber.

Tables (2)

Tables Icon

Table 1 Number of fs-Pulses Required for Bragg Grating Strength in Various Fibers

Tables Icon

Table 2 The Defect FL Found in the Core and Cladding in Each Fiber with and without Hydrogen Loading*

Metrics