Abstract

We have demonstrated a binary chemoselective gas sensor using a combination of plasmonic nanohole arrays and a voltage-directed assembly of diazonium chemistry. The employment of a voltage-directed functionalization allows for the realization of a multiplexed sensor. The device was read optically and was fabricated using a combination of electron-beam and conventional lithography; it contains several regions each electrically isolated from each other. We used calibrated gas dosage delivery to confirm the selectivity of the sensor and observed reversible spectral shifts of several nm upon gas exposure. The resulting spectral shift indicates the potential for use in chemical arrayed detection for low concentration gas sensing

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
    [CrossRef]
  2. “Biacore,” retrieved www.biacore.com .
  3. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
    [CrossRef]
  4. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
    [CrossRef] [PubMed]
  5. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008).
    [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  7. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  8. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  9. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  10. J. L. Briscoe and S.-Y. Cho, “A periodically coupled plasmon nanostructure for refractive index sensing,” Opt. Express19(9), 8815–8820 (2011).
    [CrossRef] [PubMed]
  11. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express15(26), 18119–18129 (2007).
    [CrossRef] [PubMed]
  12. K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
    [CrossRef]
  13. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  14. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  15. “Lumerical,” retrieved www.lumerical.com .
  16. J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
    [CrossRef]
  17. J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
    [CrossRef] [PubMed]
  18. R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
    [CrossRef] [PubMed]
  19. R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
    [CrossRef] [PubMed]
  20. R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
    [CrossRef] [PubMed]
  21. S. M. Dirk, S. W. Howell, B. K. Price, H. Fan, W. Cody, D. R. Wheeler, J. M. Tour, J. J. Whiting, and R. J. Simonson, “Vapor sensing using conjugated molecule-linked Au nanoparticles in a siloxane matrix,” Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22–26, 2009, COLL-116 (2009).

2012 (1)

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

2011 (1)

2010 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

2008 (2)

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

2007 (7)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
[CrossRef]

J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express15(26), 18119–18129 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Arango, D. C.

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

Bishop, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Blair, S.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Briscoe, J. L.

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Brozik, S. M.

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
[CrossRef]

Chang, S. H.

Cheng, K.

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

Cho, S.-Y.

Cui, Z.

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

Dai, S.

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

de Lange, V.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

De Leebeeck, A.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Dirk, S. M.

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
[CrossRef]

J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

Du, Z.

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Fainman, Y.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Gray, S. K.

Harper, J. C.

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
[CrossRef]

J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
[CrossRef] [PubMed]

Henzie, J.

Herron, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Kumar, L. K. S.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, Q.

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Liu, Y.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

McMahon, J. M.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Odom, T. W.

Pang, L.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Polsky, R.

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
[CrossRef]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

Rawlings, J. A.

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

Schatz, G. C.

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Tetz, K. A.

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wang, S.

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

Wheeler, D. R.

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
[CrossRef]

J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
[CrossRef] [PubMed]

Williams, L.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Acc. Chem. Res. (1)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Anal. Chem. (1)

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem.79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Cheng, S. Wang, Z. Cui, Q. Li, S. Dai, and Z. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett.100(25), 253101 (2012).
[CrossRef]

Biosens. Bioelectron. (1)

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, D. C. Arango, and S. M. Brozik, “Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications,” Biosens. Bioelectron.23(6), 757–764 (2008).
[CrossRef] [PubMed]

Chem. Commun. (1)

R. Polsky, J. C. Harper, D. R. Wheeler, S. M. Dirk, J. A. Rawlings, and S. M. Brozik, “Reagentless electrochemical immunoassay using electrocatalytic nanoparticle-modified antibodies,” Chem. Commun. (26), 2741–2743 (2007).
[CrossRef] [PubMed]

Electroanalysis (1)

J. C. Harper, R. Polsky, S. M. Dirk, D. R. Wheeler, and S. M. Brozik, “Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes,” Electroanalysis19(12), 1268–1274 (2007).
[CrossRef]

Langmuir (2)

J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, and S. M. Brozik, “Selective immobilization of DNA and antibody probes on electrode arrays: simultaneous electrochemical detection of DNA and protein on a single platform,” Langmuir23(16), 8285–8287 (2007).
[CrossRef] [PubMed]

R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, and S. M. Brozik, “Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection,” Langmuir23(2), 364–366 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Other (3)

“Biacore,” retrieved www.biacore.com .

“Lumerical,” retrieved www.lumerical.com .

S. M. Dirk, S. W. Howell, B. K. Price, H. Fan, W. Cody, D. R. Wheeler, J. M. Tour, J. J. Whiting, and R. J. Simonson, “Vapor sensing using conjugated molecule-linked Au nanoparticles in a siloxane matrix,” Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22–26, 2009, COLL-116 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic representation of the different steps for achieving a multiplexed chemoseletive sensor array. Each sensor area (A, B, N) has a nanohole array region and is attached to an electrical contact for the purpose of providing an electrical bias for a voltage-directed assembly process. (b) Assembly process of a series of chemoselective compounds to construct a multiplexed sensor array. Chemoselectivity is given to an individual sensing area using a voltage-directed assembly technique. Since the assembly occurs only in the presence of an applied voltage, separate sensors can be given different chemistries in subsequent steps.

Fig. 2
Fig. 2

(a) Schematic representation of the difficulty of gas sensing using plasmonics. A few gas molecules are adsorbed near the vicinity of the nanohole causing a change in the dielectric environment. This change is minute due to the low density of adsorbed molecules. Furthermore, flexible gas chemoselectivity is quite challenging. (b) Simulated (blue-solid) and measured (dotted-red) transmission through a nano-scale perforated gold film. The simulation results were obtained using a diameter of 200nm for circular holes separated by a pitch of 400nm, in a 50nm thick gold film on a silica substrate.

Fig. 3
Fig. 3

(a) Microscope image of two sensor elements each composed of multiple nanohole arrays fabricated using PMMA with a complimentary pattern. The two sensor arrays are electrically isolated and both are connected to a gold contact pad (not shown) by 10µm wide bus lines. This pad was used for the electrical bias necessary to perform the voltage-driven assembly process of the surface functionalization. (b) SEM image showing the dimensions of the perforation in the gold film. The nanoholes are 200nm in diameter and are separated by 400nm in a square lattice.

Fig. 4
Fig. 4

Schematic representation of the (a) assembled chemoselective compound, (b) the assembled chemoselective compound following deprotection, and (c) the detection process.

Fig. 5
Fig. 5

Schematic Representation of the gas testing assembly. A hydrogen carrier gas is used in a bubbler to transport the test molecule to the sensor array and is analyzed downstream by an HP gas chromatographer.

Fig. 6
Fig. 6

Experimental results from exposing the nanohole array sensor to a dilute concentration of the test molecule. The initial resonance shift (left-hand panel) is caused, at 15 minutes of flowing the test molecule, by the selective adsorption of the analyte and the following resonance shift (middle panel), at 20 minutes, is due to desorption of the molecule. After desorption the resonance returns to the initial condition. The shift from the exposure to the analyte (right-hand panel) is compared to the lack of a shift caused by exposure to the carrier gas.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ SP ( ε eff ε m ε eff + ε m ) 1/2 ,

Metrics