Abstract

Provided herein is a detailed analysis of the Brillouin properties of alumina-doped silica optical fiber. The acoustic velocity of alumina in silica is shown to be a very strong function of its mass density, which can vary significantly from sample-to-sample and likely originates from the observed linear relationship between the longitudinal elastic modulus and the mass density. Further, the refractive index versus the alumina concentration provides a very sensitive probe of this mass density, and can be used to derive other structural details about the alumina. For example, for the first time to the best of our knowledge measurements of the thermo- and strain-acoustic coefficients (TAC and SAC, respectively) of the alumina dopant in silica-based fiber are presented and it is shown that these quantities are not strongly influenced by the density of alumina. Further, the material acoustic damping does not appear to be strongly influenced by the density. The TAC and SAC, or the dependence of the acoustic velocity on temperature or strain, respectively, are both found to be negative and large for alumina, in fact much larger than those for silica. Alumina thus represents a unique and potentially very useful material for the compositional tuning of the Brillouin scattering characteristics of optical fibers for distributed sensing and other applications. Conversely, these properties of alumina reduce the effectiveness of using applied temperature or strain gradients to fiber in order to suppress Brillouin scattering in fiber laser systems.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin spectroscopy of a novel baria-doped silica glass optical fiber

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato
Opt. Express 21(9) 10924-10941 (2013)

Brillouin scattering properties of lanthano–aluminosilicate optical fiber

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster
Appl. Opt. 53(25) 5660-5671 (2014)

Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato
Opt. Lett. 40(21) 5030-5033 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  2. A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
    [Crossref]
  3. T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).
  4. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
    [Crossref]
  5. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [Crossref] [PubMed]
  6. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
    [Crossref]
  7. T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibres and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2006), paper OThC5.
  8. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [Crossref] [PubMed]
  9. P. Dragic, “SBS-suppressed, single mode Yb-doped fibre amplifiers,” in Proc. OFC/NFOEC (2009), paper J.Th.A.10.
  10. C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
    [Crossref]
  11. P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
    [Crossref] [PubMed]
  12. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proc. CLEO/QELS Tech. Dig. (2005), pp. 1984–1986.
  13. P. Dragic, “Brillouin suppression by fiber design,” in IEEE Summer Top. Meet. Ser. (2010), pp. 151–152.
  14. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express 17(18), 16225–16237 (2009).
    [Crossref] [PubMed]
  15. L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).
  16. P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
    [Crossref]
  17. K. Nassau, J. W. Shiever, and J. T. Krause, “Preparation and properties of fused silica containing alumina,” J. Am. Ceram. Soc. 58(9-10), 461 (1975).
    [Crossref]
  18. M. Huggins and K. Sun, “Calculation of density and optical constants of a glass from its composition in weight percentage,” J. Am. Ceram. Soc. 26(1), 4–11 (1943).
    [Crossref]
  19. Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65(1), 30–34 (1989).
    [Crossref]
  20. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
    [Crossref]
  21. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
    [Crossref]
  22. J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239(1-3), 57–65 (1998).
    [Crossref]
  23. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
    [Crossref]
  24. P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1(4), 686–699 (2011).
    [Crossref]
  25. P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2(4), 391–404 (2012).
    [Crossref]
  26. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
    [Crossref]
  27. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).
  28. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [Crossref]
  29. J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
    [Crossref]
  30. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
    [Crossref]
  31. P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci. 1(3), 330–337 (2010).
    [Crossref]
  32. P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26(8), 1614–1620 (2009).
    [Crossref]
  33. A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6(1), 17–20 (1988).
    [Crossref]
  34. P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
    [Crossref]
  35. P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29(7), 967–973 (2011).
    [Crossref]
  36. G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B 65(10), 104202 (2002).
    [Crossref]
  37. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  38. W. Taylor, “Structure of sillimanite and mullite,” Z. Kristallogr. 68, 503–521 (1928).
  39. S. Spinner, “Temperature dependence of elastic constants of vitreous silica,” J. Am. Ceram. Soc. 45(8), 394–397 (1962).
    [Crossref]
  40. R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
    [Crossref]
  41. S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
    [Crossref]
  42. B. Stern, (Cornell University), V. DeFilippo (New Jersey Institute of Technology), and A. Ballato (Clemson University) are preparing a manuscript to be called “Elasticity of alumina to 1825 K, computed from sapphire data by self-consistent averaging.”
  43. R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80(8), 1919–1928 (1997).
    [Crossref]
  44. H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B Condens. Matter 45(17), 9604–9610 (1992).
    [Crossref] [PubMed]

2012 (3)

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2(4), 391–404 (2012).
[Crossref]

2011 (2)

2010 (4)

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci. 1(3), 330–337 (2010).
[Crossref]

2009 (3)

2008 (1)

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[Crossref]

2007 (4)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[Crossref]

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[Crossref] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

2006 (1)

T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).

2005 (2)

R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
[Crossref]

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
[Crossref]

2004 (2)

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

2002 (1)

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B 65(10), 104202 (2002).
[Crossref]

1998 (1)

J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239(1-3), 57–65 (1998).
[Crossref]

1997 (2)

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80(8), 1919–1928 (1997).
[Crossref]

1993 (2)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

1992 (1)

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B Condens. Matter 45(17), 9604–9610 (1992).
[Crossref] [PubMed]

1989 (2)

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65(1), 30–34 (1989).
[Crossref]

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

1988 (1)

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

1987 (1)

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

1986 (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

1975 (1)

K. Nassau, J. W. Shiever, and J. T. Krause, “Preparation and properties of fused silica containing alumina,” J. Am. Ceram. Soc. 58(9-10), 461 (1975).
[Crossref]

1972 (1)

1962 (1)

S. Spinner, “Temperature dependence of elastic constants of vitreous silica,” J. Am. Ceram. Soc. 45(8), 394–397 (1962).
[Crossref]

1943 (1)

M. Huggins and K. Sun, “Calculation of density and optical constants of a glass from its composition in weight percentage,” J. Am. Ceram. Soc. 26(1), 4–11 (1943).
[Crossref]

1928 (1)

W. Taylor, “Structure of sillimanite and mullite,” Z. Kristallogr. 68, 503–521 (1928).

Abe, K.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

Arai, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Asman, C. P.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[Crossref]

Ballato, A.

R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
[Crossref]

Ballato, J.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

Bass, J. D.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
[Crossref]

Bertholds, A.

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

Bonnell, L.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

Boyland, A. J.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Chatigny, S.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

Chen, X.

Croteau, A.

Crowley, A. M.

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Dändliker, R.

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

de Sandro, J.-P.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

Demeritt, J. A.

Dong, L.

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).

Dragic, P.

Dragic, P. D.

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[Crossref]

P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci. 1(3), 330–337 (2010).
[Crossref]

Eilers, H.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B Condens. Matter 45(17), 9604–9610 (1992).
[Crossref] [PubMed]

Emanetoglu, N. W.

R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
[Crossref]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).

Gagnon, E.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

Gray, S.

Gutiérrez, G.

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B 65(10), 104202 (2002).
[Crossref]

Hanawa, F.

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65(1), 30–34 (1989).
[Crossref]

Handa, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Hawkins, T.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

He, Z.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[Crossref]

Hibino, Y.

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65(1), 30–34 (1989).
[Crossref]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Honda, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Horiguchi, M.

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65(1), 30–34 (1989).
[Crossref]

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Hotate, K.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[Crossref]

Hovington, C.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

Huggins, M.

M. Huggins and K. Sun, “Calculation of density and optical constants of a glass from its composition in weight percentage,” J. Am. Ceram. Soc. 26(1), 4–11 (1943).
[Crossref]

Ishii, Y.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Jackson, J. M.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
[Crossref]

Jen, C.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

Johansson, B.

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B 65(10), 104202 (2002).
[Crossref]

Koponen, J.

T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).

Krause, J. T.

K. Nassau, J. W. Shiever, and J. T. Krause, “Preparation and properties of fused silica containing alumina,” J. Am. Ceram. Soc. 58(9-10), 461 (1975).
[Crossref]

Kumata, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).

Kushibiki, J.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

Laffey, S.

R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
[Crossref]

Lakshtanov, D. L.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
[Crossref]

Law, P.-C.

Lee, J. W.

J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239(1-3), 57–65 (1998).
[Crossref]

Li, J.

J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239(1-3), 57–65 (1998).
[Crossref]

Li, M.-J.

Liu, A.

Liu, Y.-S.

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[Crossref]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1(4), 686–699 (2011).
[Crossref]

Lu, Y.

R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
[Crossref]

Martin, J.-P.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

Mermelstein, M. D.

Morasse, B.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

Morris, S.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Munro, R. G.

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80(8), 1919–1928 (1997).
[Crossref]

Namikawa, H.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Nassau, K.

K. Nassau, J. W. Shiever, and J. T. Krause, “Preparation and properties of fused silica containing alumina,” J. Am. Ceram. Soc. 58(9-10), 461 (1975).
[Crossref]

Neron, C.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

Nicholas, J. D.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
[Crossref]

Niklès, M.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Payne, D. N.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

Philippov, V.

T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).

Poole, S. B.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

Robert, P.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rothenberg, J. E.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[Crossref]

Ruffin, A. B.

Sahu, J. K.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

Shang, A.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

Shiever, J. W.

K. Nassau, J. W. Shiever, and J. T. Krause, “Preparation and properties of fused silica containing alumina,” J. Am. Ceram. Soc. 58(9-10), 461 (1975).
[Crossref]

Sigel, G. H.

J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239(1-3), 57–65 (1998).
[Crossref]

Simo, T.

T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).

Sinogeikin, S. V.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
[Crossref]

Smith, R. G.

Söderlund, M.

T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).

Spinner, S.

S. Spinner, “Temperature dependence of elastic constants of vitreous silica,” J. Am. Ceram. Soc. 45(8), 394–397 (1962).
[Crossref]

Standish, R. J.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Stenius, P.

T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).

Strauss, E.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B Condens. Matter 45(17), 9604–9610 (1992).
[Crossref] [PubMed]

Sun, K.

M. Huggins and K. Sun, “Calculation of density and optical constants of a glass from its composition in weight percentage,” J. Am. Ceram. Soc. 26(1), 4–11 (1943).
[Crossref]

Taylor, W.

W. Taylor, “Structure of sillimanite and mullite,” Z. Kristallogr. 68, 503–521 (1928).

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Thielen, P. A.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[Crossref]

Townsend, J. E.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Walton, D. T.

Wang, J.

Webb, A. S.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Wickham, M.

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[Crossref]

Wittstruck, R. H.

R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
[Crossref]

Yablon, A. D.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[Crossref]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

Yen, W. M.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B Condens. Matter 45(17), 9604–9610 (1992).
[Crossref] [PubMed]

Yoo, S.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Zenteno, L. A.

Zou, W.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (3)

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare-earth doped optical fibres,” Electron. Lett. 23(7), 329–331 (1987).
[Crossref]

P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[Crossref]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. 76-B, 382–390 (1993).

Int. J. Appl. Glass Sci. (1)

P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci. 1(3), 330–337 (2010).
[Crossref]

J. Acoust. Soc. Am. (1)

R. H. Wittstruck, N. W. Emanetoglu, Y. Lu, S. Laffey, and A. Ballato, “Properties of transducers and substrates for high frequency resonators and sensors,” J. Acoust. Soc. Am. 118(3), 1414–1423 (2005).
[Crossref]

J. Am. Ceram. Soc. (5)

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80(8), 1919–1928 (1997).
[Crossref]

S. Spinner, “Temperature dependence of elastic constants of vitreous silica,” J. Am. Ceram. Soc. 45(8), 394–397 (1962).
[Crossref]

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[Crossref]

K. Nassau, J. W. Shiever, and J. T. Krause, “Preparation and properties of fused silica containing alumina,” J. Am. Ceram. Soc. 58(9-10), 461 (1975).
[Crossref]

M. Huggins and K. Sun, “Calculation of density and optical constants of a glass from its composition in weight percentage,” J. Am. Ceram. Soc. 26(1), 4–11 (1943).
[Crossref]

J. Appl. Phys. (2)

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65(1), 30–34 (1989).
[Crossref]

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

J. Eur. Ceram. Soc. (1)

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25(8), 1313–1324 (2005).
[Crossref]

J. Lightwave Technol. (4)

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29(7), 967–973 (2011).
[Crossref]

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

J. Non-Cryst. Solids (2)

J. W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239(1-3), 57–65 (1998).
[Crossref]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[Crossref]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (2)

Phys. Rev. B (1)

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B 65(10), 104202 (2002).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B Condens. Matter 45(17), 9604–9610 (1992).
[Crossref] [PubMed]

Proc. SPIE (3)

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008).
[Crossref]

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE 6453, 64530H (2007).
[Crossref]

T. Simo, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE 6116, 94–102 (2006).

Z. Kristallogr. (1)

W. Taylor, “Structure of sillimanite and mullite,” Z. Kristallogr. 68, 503–521 (1928).

Other (5)

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibres and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2006), paper OThC5.

P. Dragic, “SBS-suppressed, single mode Yb-doped fibre amplifiers,” in Proc. OFC/NFOEC (2009), paper J.Th.A.10.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proc. CLEO/QELS Tech. Dig. (2005), pp. 1984–1986.

P. Dragic, “Brillouin suppression by fiber design,” in IEEE Summer Top. Meet. Ser. (2010), pp. 151–152.

B. Stern, (Cornell University), V. DeFilippo (New Jersey Institute of Technology), and A. Ballato (Clemson University) are preparing a manuscript to be called “Elasticity of alumina to 1825 K, computed from sapphire data by self-consistent averaging.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

RIP and EDX measurements for the aluminosilicate fibers produced at the CGCRI. The RIP for Fiber 2 was measured at both 975 nm and 632 nm (both shown) and are nearly indistinguishable. A plot of the acoustic mode in Fiber 1 is also shown. The absolute composition is found by dividing the refractive index by Δn/[Al] for the fibers.

Fig. 2
Fig. 2

RIP and EDX measurements for the aluminosilicate fiber produced at COMSET. The absolute composition is found by dividing the refractive index by Δn/[Al] for the fiber (2.39 × 10−3 per mole% Al2O3 for Fiber 3).

Fig. 3
Fig. 3

Refractive index difference for the three fibers of the present study and two data points for the SDOF from [23]. The points are the measured data for the fibers.

Fig. 4
Fig. 4

Brillouin spectra measured for Fiber 2 at room temperature and an elevated temperature. One anti-guiding acoustic mode is observed.

Fig. 5
Fig. 5

Measurements of the change in free spectral range, ΔFSR, (Hz) versus temperature for the TOC measurement utilizing the ring fiber laser arrangement described in Section 2. The solid line is the model fit to the data.

Fig. 6
Fig. 6

Acoustic velocity versus alumina content for the three fibers of this study.

Fig. 7
Fig. 7

Longitudinal elastic modulus plotted versus the mass density of pure alumina. There appears to be a very linear (R2 = 0.98) relationship between the two quantities in the density range (linear fit shown as the red line).

Tables (3)

Tables Icon

Table 1 Summary of the measured fiber characteristics. Fibers are listed in order of increasing Δn/[Al].

Tables Icon

Table 2 Deduced physical properties of the alumina constituent in each of the test fibers. Results for the SDOF are provided for comparison purposes.

Tables Icon

Table 3 T c 11 ( 1 ) from several sources in the literature, in comparison with values deduced from the fibers of this study.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dν d(T,ε) = 2 λ o ( V dn d(T,ε) +n dV d(T,ε) ),
Δ ν ESA M =MΔFSR=M c ( nl+NL ) 2 ( n( l 0 ,ξ l 0 )+lQ )(ε,ΔT),
n=m n A +(1m) n S
V= ( m V A + ( 1m ) V S ) 1
m= ρ S M S M A ρ A [ Al ] 1+[ Al ]( ρ S M S M A ρ A 1 )
d dT ln( ν )= 1 ν dν dT = T ν ( 1 ) = 1 n dn dT + 1 V dV dT = T n ( 1 ) + T V ( 1 )
T c 11 ( 1 ) =3ξ+2 T V ( 1 )
g B = 2π n 7 p 12 2 c λ o 2 ρ V a Δν ,

Metrics