Abstract

We present the measurement results for coefficients of linear thermal expansion (CTE) and thermo-optic coefficients of uniaxial yttrium orthovanadate YVO4 crystals in the temperature range 80 - 320 K. The CTE data were obtained for the directions parallel (α||) and perpendicular (α) to the optical c-axis of YVO4. The corresponding polynomial expressions for the observed temperature dependencies were derived. At 80 K the CTE values α ~0.11∙10−6K−1 and α|| ~2.43∙10−6K-, are approximately 5.3% and 28% of those at room temperature, respectively. Thermo-optic coefficients corresponding to ordinary and extra-ordinary beams were measured for two wavelengths, 633 and 1570 nm. To the best of our knowledge, the CTE and dn/dT data for this important laser host in the temperature range 80 - 320 K are reported for the first time.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
    [CrossRef]
  2. N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic properties and laser performance of resonantly-pumped cryo-cooled Er3+:GdVO4,” Opt. Express20(6), 6080–6084 (2012).
    [CrossRef] [PubMed]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
    [CrossRef]
  4. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4 and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006).
    [CrossRef] [PubMed]
  5. A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
    [CrossRef]
  6. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express16(12), 8995–9010 (2008).
    [CrossRef] [PubMed]
  7. H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
    [CrossRef]
  8. V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).
  9. G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structures,” J. Less Common Met.26(2), 255–262 (1972).
    [CrossRef]
  10. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt.49(4), 644–647 (2010).
    [CrossRef] [PubMed]

2012

2011

N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
[CrossRef]

2010

2008

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express16(12), 8995–9010 (2008).
[CrossRef] [PubMed]

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

2007

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

2006

2005

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

1999

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

1972

G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structures,” J. Less Common Met.26(2), 255–262 (1972).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Balembois, F.

Bayer, G.

G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structures,” J. Less Common Met.26(2), 255–262 (1972).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Chow, Y. T.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Currin, K. M.

Didierjean, J.

Dubinskii, M.

N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic properties and laser performance of resonantly-pumped cryo-cooled Er3+:GdVO4,” Opt. Express20(6), 6080–6084 (2012).
[CrossRef] [PubMed]

N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
[CrossRef]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Fromzel, V.

N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic properties and laser performance of resonantly-pumped cryo-cooled Er3+:GdVO4,” Opt. Express20(6), 6080–6084 (2012).
[CrossRef] [PubMed]

N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
[CrossRef]

Georges, P.

Herault, E.

Kisil, V. E.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Kuleshov, N. V.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Kupchenko, M. I.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Kutovoi, S. A.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

Lee, J. J.

Lu, M. K.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Lukasiewicz, T.

N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic properties and laser performance of resonantly-pumped cryo-cooled Er3+:GdVO4,” Opt. Express20(6), 6080–6084 (2012).
[CrossRef] [PubMed]

N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
[CrossRef]

Matrosov, V. N.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Matrosova, T. A.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Meng, X. L.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Northridge, J. M.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Perlov, D.

Pestryakov, E. V.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Popov, P. A.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Ryba-Romanowski, W.

N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic properties and laser performance of resonantly-pumped cryo-cooled Er3+:GdVO4,” Opt. Express20(6), 6080–6084 (2012).
[CrossRef] [PubMed]

N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
[CrossRef]

Sato, Y.

Scherbitsky, V. G.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Shcherbakov, I. A.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Taira, T.

Ter-Gabrielyan, N.

N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic properties and laser performance of resonantly-pumped cryo-cooled Er3+:GdVO4,” Opt. Express20(6), 6080–6084 (2012).
[CrossRef] [PubMed]

N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Wang, C. Q.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Yalg, A. G.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

Yang, Z. H.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Yu, W. T.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Zagumennyi, A. I.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

Zavartsev, Y. D.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

Zelmon, D. E.

Zerouk, F.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

Zhang, H. J.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Zhu, L.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Appl. Opt.

Cryst. Res. Technol.

H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol.34(8), 1011–1016 (1999).
[CrossRef]

Funct. Mater.

V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, A. G. Yalg, E. V. Pestryakov, V. E. Kisil, V. G. Scherbitsky, and N. V. Kuleshov, “Doped YVO4 crystals: growing, properties and applications,” Funct. Mater.12, 755–756 (2005).

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

J. Less Common Met.

G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structures,” J. Less Common Met.26(2), 255–262 (1972).
[CrossRef]

Laser Phys. Lett.

N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, “High power resonantly diode-pumped σ-configuration Er3+:YVO4 laser at 1593.5 nm,” Laser Phys. Lett.8(7), 529–534 (2011).
[CrossRef]

Opt. Express

Quantum Electron.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Heat conduction of laser vanadate crystals,” Quantum Electron.38(3), 227–232 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set-up used for the γ(λ,T) measurements. The slit was used for selecting a single interference fringe. Three orientations (a-c) of the uniaxial YVO4 crystal are shown with respect to the polarization of a probe beam. Inset (d) shows an arrangement for the CTE measurements in free space.

Fig. 2
Fig. 2

(a) Temperature dependence of the coefficient of linear thermal expansion α of the YVO4 crystal, as was measured using a free space interferometer shown in Fig. 1d. The maximum observed scatter of data points is ± 10% (b,c) - Fractional change in optical path length γ1 and γ2 versus temperature of the YVO4 crystal measured with 633 nm and 1570 nm probe beams (d) - fractional change in the optical path length γ3 measured with 633 nm wavelength.

Fig. 3
Fig. 3

Temperature dependencies of the linear thermal expansion coefficients of the YVO4 crystal in the direction normal to (α) and parallel to (α) the c-axis. The dependence α(T) is the same as linear extrapolation of the data in Fig. 2a.

Fig. 4
Fig. 4

Temperature dependencies of YVO4 refractive indices at 633 nm and 1570 nm. a. ordinary indices no. b. extra-ordinary indices ne.

Fig. 5
Fig. 5

Temperature dependencies of thermo-optic coefficients of YVO4 crystal according to Eqs. (10)(13) for the 633 and 1570 nm wavelengths.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d( n( λ,T )2L( T ) )= λ 2 dT
γ( λ,T )= 1 n( λ,T )L( T ) d( n( λ,T )L( T ) ) dT = 1 n(λ,T) dn( λ,T ) dT + 1 L(T) dL( T ) dT = 1 n( λ,T ) dn( λ,T ) dT +α( λ,T) )
γ 1 = 1 n o d n o dT + α ( Fig. 1a ),
γ 2 = 1 n e d n e dT + α ( Fig. 1b ),    and
γ 3 = 1 n o d n o dT + α || ( Fig. 1c ).
γ 1 ( 633 nm)=( 2.45376+0.05817T5.6807 10 5 T 2 ) 10 6
γ 2 ( 633 nm)=( 0.24148+0.022T ) 10 6
γ 3 ( 633 nm)=( 3.67766+0.1094T1.43165 10 4 T 2 ) 10 6
α =( 0.60786+0.00896T ) 10 6
α || =( 1.83176+0.06019T8.6358 10 5 T 2 ) 10 6
γ 1 ( 1570 nm)=( 4.93966+0.10745T1.42589 10 4 T 2 ) 10 6
γ 2 ( 1570 nm)=( 0.96475+0.03405T ) 10 6
d n o dT (633nm)=( 3.67235+0.0979T1.12722 10 4 T 2 ) 10 6
d n e dT (633nm)=( 0.80733+0.0289T ) 10 6
d n o dT (1570nm)=( 8.40637+0.19106T2.75973 10 4 T 2 ) 10 6
d n e dT (1570nm)=( 0.77618+0.05393T ) 10 6

Metrics