Abstract

Metallic gratings were fabricated using high energy laser interference lithography with a frequency tripled Nd:YAG nanosecond laser. The grating structures were first recorded in a photosensitive layer and afterwards transferred to an Au film. High quality Au gratings with a period of 770 nm and peak-to-valley heights of 20-60 nm exhibiting plasmonic resonance response were successfully designed, fabricated and characterized.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd’s mirror

Hanbit Kim, Hyunho Jung, Dong-Hyun Lee, Kyu Back Lee, and Heonsu Jeon
Appl. Opt. 55(2) 354-359 (2016)

Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference

Kandammathe Valiyaveedu Sreekanth, Jeun Kee Chua, and Vadakke Matham Murukeshan
Appl. Opt. 49(35) 6710-6717 (2010)

References

  • View by:
  • |
  • |
  • |

  1. F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
    [Crossref] [PubMed]
  2. B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
    [Crossref]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  4. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1901).
    [Crossref]
  5. G. Nemova and R. Kashyap, “A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating,” J. Lightwave Technol. 25(8), 2244–2250 (2007).
    [Crossref]
  6. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).
  7. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [Crossref]
  8. K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
    [Crossref]
  9. D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17(2), 94–103 (2006).
    [Crossref]
  10. F. Brizuela, Y. Wang, C. A. Brewer, F. Pedaci, W. Chao, E. H. Anderson, Y. Liu, K. A. Goldberg, P. Naulleau, P. Wachulak, M. C. Marconi, D. T. Attwood, J. J. Rocca, and C. S. Menoni, “Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination,” Opt. Lett. 34(3), 271–273 (2009).
    [Crossref] [PubMed]
  11. A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
    [Crossref]
  12. Y. Fu, N. Bryan, and W. Zhou, “Quasi-direct writing of diffractive structures with a focused ion beam,” Opt. Express 12(9), 1803–1809 (2004).
    [Crossref] [PubMed]
  13. X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
    [Crossref]
  14. C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, “Review: developments in micro/nanoscale fabrication by focused ion beams,” Vacuum 86(8), 1014–1035 (2012).
    [Crossref]
  15. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express 16(4), 2415–2422 (2008).
    [Crossref] [PubMed]
  16. A. A. Baski, “Fabrication of nanoscale structures using STM and AFM,” Appl. Surf. Sci. 3, 271–277 (2002).
  17. G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
    [Crossref]
  18. S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
    [Crossref]
  19. A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
    [Crossref]
  20. A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
    [Crossref]
  21. Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
    [Crossref] [PubMed]
  22. C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
    [Crossref]
  23. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
    [Crossref] [PubMed]
  24. H. Shin, H. Yoo, and M. Lee, “Fabrication of Au thin film gratings by pulsed laser interference,” Appl. Surf. Sci. 256(9), 2944–2947 (2010).
    [Crossref]
  25. K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
    [Crossref] [PubMed]
  26. E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
    [Crossref]
  27. J. J. J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(2), 267–270 (2011).
    [Crossref]
  28. A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254(4), 930–936 (2007).
    [Crossref]
  29. P. Rodríguez-Franco, A. Arriola, N. Darwish, H. Keshmiri, T. Tavera, S. M. Olaizola, and M. Moreno, “Fabrication of broad area optical nanostructures for high throughput chemical sensing,” in Proceedings IMCS 2012 – The 14th International Meeting on Chemical Sensors (2012).
  30. M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
    [Crossref]
  31. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
    [Crossref]
  32. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [Crossref] [PubMed]
  33. M. M. J. Treacy, “Dynamical diffraction explanationof the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66(19), 195105 (2002).
    [Crossref]
  34. C. K. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik (Stuttg.) 122(21), 1881–1884 (2011).
    [Crossref]

2012 (1)

C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, “Review: developments in micro/nanoscale fabrication by focused ion beams,” Vacuum 86(8), 1014–1035 (2012).
[Crossref]

2011 (5)

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
[Crossref] [PubMed]

J. J. J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(2), 267–270 (2011).
[Crossref]

C. K. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik (Stuttg.) 122(21), 1881–1884 (2011).
[Crossref]

2010 (4)

E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

H. Shin, H. Yoo, and M. Lee, “Fabrication of Au thin film gratings by pulsed laser interference,” Appl. Surf. Sci. 256(9), 2944–2947 (2010).
[Crossref]

A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
[Crossref]

2009 (4)

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

F. Brizuela, Y. Wang, C. A. Brewer, F. Pedaci, W. Chao, E. H. Anderson, Y. Liu, K. A. Goldberg, P. Naulleau, P. Wachulak, M. C. Marconi, D. T. Attwood, J. J. Rocca, and C. S. Menoni, “Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination,” Opt. Lett. 34(3), 271–273 (2009).
[Crossref] [PubMed]

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

2008 (3)

2007 (3)

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

G. Nemova and R. Kashyap, “A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating,” J. Lightwave Technol. 25(8), 2244–2250 (2007).
[Crossref]

A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254(4), 930–936 (2007).
[Crossref]

2006 (2)

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17(2), 94–103 (2006).
[Crossref]

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

2005 (1)

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[Crossref]

2002 (3)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

M. M. J. Treacy, “Dynamical diffraction explanationof the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66(19), 195105 (2002).
[Crossref]

A. A. Baski, “Fabrication of nanoscale structures using STM and AFM,” Appl. Surf. Sci. 3, 271–277 (2002).

2001 (1)

S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

1901 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1901).
[Crossref]

Ahn, S.-H.

C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, “Review: developments in micro/nanoscale fabrication by focused ion beams,” Vacuum 86(8), 1014–1035 (2012).
[Crossref]

Anderson, E. H.

Attwood, D. T.

Ayerdi, I.

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

Bakowsky, U.

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

Baroni, P.

B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
[Crossref]

Baski, A. A.

A. A. Baski, “Fabrication of nanoscale structures using STM and AFM,” Appl. Surf. Sci. 3, 271–277 (2002).

Berthou, T.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

Bratton, D.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17(2), 94–103 (2006).
[Crossref]

Brewer, C. A.

Brizuela, F.

Bruch, J.-U.

S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
[Crossref]

Bryan, N.

Cambril, E.

A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
[Crossref]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

Carlberg, P.

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

Cattoni, A.

A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
[Crossref]

Chao, W.

Chen, H. L.

Cheung, H. W.

Choi, C. H.

K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
[Crossref] [PubMed]

Chuang, S. Y.

Chung, W.-S.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

D’Alessandria, M.

A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254(4), 930–936 (2007).
[Crossref]

Dai, J.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17(2), 94–103 (2006).
[Crossref]

Decanini, D.

A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
[Crossref]

Du, K.

K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
[Crossref] [PubMed]

Echeverria, M.

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

Echeverría, M.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

Ellman, M.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

Faini, G.

A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
[Crossref]

Flotow, H.

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

Fu, Y.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Gedvilas, M.

E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Ghadessy, F.

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

Giovanelli, R.

A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254(4), 930–936 (2007).
[Crossref]

Girdauskas, V.

E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Goldberg, K. A.

Haghiri-Gosnet, A. M.

A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
[Crossref]

Herzig, H. P.

B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
[Crossref]

Hoffmann, T.

S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
[Crossref]

Holzapfel, C.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Hong, M. H.

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
[Crossref] [PubMed]

Hor, T. S. A.

Hu, C. K.

C. K. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik (Stuttg.) 122(21), 1881–1884 (2011).
[Crossref]

Huang, Z. Q.

Huh, N.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Hwang, K.-Y.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Jang, D.-Y.

C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, “Review: developments in micro/nanoscale fabrication by focused ion beams,” Vacuum 86(8), 1014–1035 (2012).
[Crossref]

Jeong, S.-Y.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Jung, Y. S.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[Crossref]

Kaakkunen, J. J. J.

J. J. J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(2), 267–270 (2011).
[Crossref]

Kashyap, R.

Kim, C.-S.

C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, “Review: developments in micro/nanoscale fabrication by focused ion beams,” Vacuum 86(8), 1014–1035 (2012).
[Crossref]

Kim, H. K.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[Crossref]

Kim, J.-H.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Kim, Y.-R.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Kuittinen, M.

B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
[Crossref]

Kuo, S. S.

Lai, Y. H.

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

Lasagni, A.

A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254(4), 930–936 (2007).
[Crossref]

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Lee, C. C.

Lee, M.

H. Shin, H. Yoo, and M. Lee, “Fabrication of Au thin film gratings by pulsed laser interference,” Appl. Surf. Sci. 256(9), 2944–2947 (2010).
[Crossref]

Lehr, C. M.

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

Li, P.

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

Li, X.

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

Lim, H.-K.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Liu, C. H.

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

Lum, M. C.

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

Luo, G.

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

Mao, W. D.

K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
[Crossref] [PubMed]

Marconi, M. C.

Mathur, S.

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

Menoni, C. S.

Molotokaité, E.

E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Mucklich, F.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Mücklich, F.

A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254(4), 930–936 (2007).
[Crossref]

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

Nakagawa, W.

B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
[Crossref]

Namkoong, K.

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

Naulleau, P.

Nemova, G.

Niu, X.

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

Ober, C. K.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17(2), 94–103 (2006).
[Crossref]

Olaizola, S. M.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Päivänranta, B.

B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
[Crossref]

Paivasaari, K.

J. J. J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(2), 267–270 (2011).
[Crossref]

Pang, Z.

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

Pedaci, F.

Peng, C. S.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

Perez, N.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

Pérez, N.

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

Raciukaitis, G.

E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Rocca, J. J.

Rodriguez, A.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

Rodríguez, A.

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

Savall, J.

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

Scharf, T.

B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
[Crossref]

Seekamp, J.

S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
[Crossref]

Shen, H.

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

Shin, H.

H. Shin, H. Yoo, and M. Lee, “Fabrication of Au thin film gratings by pulsed laser interference,” Appl. Surf. Sci. 256(9), 2944–2947 (2010).
[Crossref]

Sun, Z.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[Crossref]

Tan, L. S.

Torres, C. M. S.

S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
[Crossref]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction explanationof the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66(19), 195105 (2002).
[Crossref]

Vahimaa, P.

J. J. J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(2), 267–270 (2011).
[Crossref]

Verevkin, Y. K.

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

Wachulak, P.

Wan, Y.

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

Wang, Q.

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

Wang, Y.

Wang, Z.

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

Wathuthanthri, I.

K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
[Crossref] [PubMed]

Weirich, T.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1901).
[Crossref]

Xie, G.

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

Xu, W.

K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
[Crossref] [PubMed]

Yang, D.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17(2), 94–103 (2006).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yoo, H.

H. Shin, H. Yoo, and M. Lee, “Fabrication of Au thin film gratings by pulsed laser interference,” Appl. Surf. Sci. 256(9), 2944–2947 (2010).
[Crossref]

Yu, F.

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

Zankovych, S.

S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
[Crossref]

Zhang, F.

Zhang, G.

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

Zhang, J.

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

Zhang, J. B.

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

Zhang, X.

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

Zhang, Y.

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

Zhou, W.

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

Y. Fu, N. Bryan, and W. Zhou, “Quasi-direct writing of diffractive structures with a focused ion beam,” Opt. Express 12(9), 1803–1809 (2004).
[Crossref] [PubMed]

Zhu, T.

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

Appl. Phys. Lett. (1)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

C. H. Liu, M. H. Hong, M. C. Lum, H. Flotow, F. Ghadessy, and J. B. Zhang, “Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching,” Appl. Phys., A Mater. Sci. Process. 101(2), 237–241 (2010).
[Crossref]

J. J. J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(2), 267–270 (2011).
[Crossref]

Appl. Surf. Sci. (5)

A. Lasagni, M. D’Alessandria, R. Giovanelli, and F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254(4), 930–936 (2007).
[Crossref]

H. Shin, H. Yoo, and M. Lee, “Fabrication of Au thin film gratings by pulsed laser interference,” Appl. Surf. Sci. 256(9), 2944–2947 (2010).
[Crossref]

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[Crossref]

A. A. Baski, “Fabrication of nanoscale structures using STM and AFM,” Appl. Surf. Sci. 3, 271–277 (2002).

Biomaterials (1)

F. Yu, P. Li, H. Shen, S. Mathur, C. M. Lehr, U. Bakowsky, and F. Mücklich, “Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface,” Biomaterials 26(15), 2307–2312 (2005).
[Crossref] [PubMed]

J. Laser Micro/Nanoeng. (1)

E. Molotokaité, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

J. Lightwave Technol. (1)

Microelectron. Eng. (4)

B. Päivänranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Antireflective nanostructured microlenses,” Microelectron. Eng. 85(5-6), 1089–1091 (2008).
[Crossref]

A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: from laboratory to industry,” Microelectron. Eng. 86(4–6), 937–940 (2009).
[Crossref]

A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, “Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold,” Microelectron. Eng. 87(5-8), 1015–1018 (2010).
[Crossref]

X. Li, Q. Wang, J. Zhang, W. Zhou, Y. Liu, Y. Wan, and X. Niu, “Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process,” Microelectron. Eng. 86(10), 2015–2019 (2009).
[Crossref]

Nanotechnology (4)

G. Luo, G. Xie, Y. Zhang, G. Zhang, Y. Zhang, P. Carlberg, T. Zhu, and Z. Liu, “Scanning probe lithography for nanoimprinting mould fabrication,” Nanotechnology 17(12), 3018–3022 (2006).
[Crossref]

S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12(2), 91–95 (2001).
[Crossref]

Z. Pang and X. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[Crossref] [PubMed]

K. Du, I. Wathuthanthri, W. D. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22(28), 285306 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optik (Stuttg.) (1)

C. K. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik (Stuttg.) 122(21), 1881–1884 (2011).
[Crossref]

Phys. Rev. B (1)

M. M. J. Treacy, “Dynamical diffraction explanationof the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66(19), 195105 (2002).
[Crossref]

Phys. Rev. Lett. (1)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

Polym. Adv. Technol. (1)

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17(2), 94–103 (2006).
[Crossref]

Proc. Phys. Soc. Lond. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1901).
[Crossref]

Sens. Actuators B Chem. (2)

K.-Y. Hwang, S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh, “Rapid detection of bacterial cell from whole blood: Integration of DNA sample preparation into single micro-PCR chip,” Sens. Actuators B Chem. 154(1), 46–51 (2011).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Vacuum (1)

C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, “Review: developments in micro/nanoscale fabrication by focused ion beams,” Vacuum 86(8), 1014–1035 (2012).
[Crossref]

Z. Naturforsch. B (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Other (1)

P. Rodríguez-Franco, A. Arriola, N. Darwish, H. Keshmiri, T. Tavera, S. M. Olaizola, and M. Moreno, “Fabrication of broad area optical nanostructures for high throughput chemical sensing,” in Proceedings IMCS 2012 – The 14th International Meeting on Chemical Sensors (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Step-by-step schematic of the fabrication process.

Fig. 2
Fig. 2

Topography of the grating inscribed on the spin-coated negative photoresist layer (with a pulse energy of 15 mJ) and its corresponding cross section (b).

Fig. 3
Fig. 3

Topography of the grating after the Ar ion etching process (a) and its corresponding cross section (b).

Fig. 4
Fig. 4

Topography of the final grating inscribed on the Au surface (a) and its corresponding cross section (b).

Fig. 5
Fig. 5

Reflectance spectra for s-polarized light at different angles of incidence (the individual measurements are offset for clarity).

Fig. 6
Fig. 6

Reflectance spectra for p-polarized light at different angles of incidence (the individual measurements are offset for clarity).

Fig. 7
Fig. 7

Comparison between plasmon resonance theory and experiments when the gratings are illuminated with a white light source. Continuous lines show the theoretical position of the resonance peaks while the dots show the experimental position of the peak at different wavelengths.

Tables (1)

Tables Icon

Table 1 Process Parameters for the Samples in Fig. 7

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sinθ=±1 mλ Λ n d

Metrics