Abstract

This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 ± 0.02 dB at 1600 nm, including a propagation loss of 1.6 ± 0.3 dB. Active characterization shows a relative gain of 2.524 ± 0.002 dB/cm and 1.359 ± 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Lezal, “Chalcogenide glasses—survey and progress,” J. Optoelectron. Adv. Mater.5, 23–34 (2003).
  2. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications, Springer Series in Optical Sciences (Springer, 2007).
  3. B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  4. K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids212(2-3), 143–150 (1997).
    [CrossRef]
  5. S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008).
    [CrossRef]
  6. D. J. Coleman, P. Golding, T. A. King, and S. D. Jackson, “Spectroscopic and energy-transfer parameters for Er3+ doped and Er3+, Pr3+ codoped GeGaS glasses,” J. Opt. Soc. Am. B19(9), 1982–1989 (2002).
    [CrossRef]
  7. Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).
  8. Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009).
    [CrossRef]
  9. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
    [CrossRef]
  10. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express20(2), 1545–1551 (2012).
    [CrossRef] [PubMed]
  11. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  13. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett.35(23), 4036–4038 (2010).
    [CrossRef] [PubMed]
  14. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express15(24), 15776–15781 (2007).
    [CrossRef] [PubMed]
  15. G. Della Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “C-band waveguide amplifier produced by femtosecond laser writing,” Opt. Express13(16), 5976–5982 (2005).
    [CrossRef] [PubMed]
  16. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
    [CrossRef]
  17. E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys.73(7), 611–614 (2005).
    [CrossRef]
  18. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  19. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express14(5), 1797–1803 (2006).
    [CrossRef] [PubMed]
  20. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express1(4), 102–107 (1997).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

2010 (2)

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
[CrossRef]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett.35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

2009 (1)

Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009).
[CrossRef]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (3)

G. Della Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “C-band waveguide amplifier produced by femtosecond laser writing,” Opt. Express13(16), 5976–5982 (2005).
[CrossRef] [PubMed]

E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys.73(7), 611–614 (2005).
[CrossRef]

Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).

2003 (2)

C. D. Lezal, “Chalcogenide glasses—survey and progress,” J. Optoelectron. Adv. Mater.5, 23–34 (2003).

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

2002 (1)

1997 (2)

1996 (1)

Abe, K.

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids212(2-3), 143–150 (1997).
[CrossRef]

Aggarwal, I. D.

Beecher, S. J.

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett.35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
[CrossRef]

Bookey, H. T.

Brady, D. J.

Brik, M. G.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008).
[CrossRef]

Cernosek, Z.

Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009).
[CrossRef]

Cernoskova, E.

Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009).
[CrossRef]

Cerullo, G.

Chen, W. J.

Chiodo, N.

Coleman, D. J.

Davis, B. L.

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Davis, K. M.

Della Valle, G.

Eaton, S. M.

Eggleton, B. J.

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

Ferrari, A. C.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
[CrossRef]

Frantz, J. A.

Ganesan, R.

Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Golding, P.

Gopal, E. S. R.

Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).

Hasan, T.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
[CrossRef]

Herman, P. R.

Hewak, D. W.

Hirao, K.

Ho, S.

Ivanov, Z. G.

Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).

Ivanova, Z. G.

Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009).
[CrossRef]

Jackson, S. D.

Jha, A.

Kar, A. K.

Kasap, S.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008).
[CrossRef]

Kasap, S. O.

Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).

Killi, A.

King, T. A.

Kopf, D.

Koughia, K.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008).
[CrossRef]

Laporta, P.

Lederer, M.

Lezal, C. D.

C. D. Lezal, “Chalcogenide glasses—survey and progress,” J. Optoelectron. Adv. Mater.5, 23–34 (2003).

Li, J.

Macdonald, J. R.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

McCarthy, J. E.

Miura, K.

Morgner, U.

Morinaga, K.

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids212(2-3), 143–150 (1997).
[CrossRef]

Ng, M. L.

Osellame, R.

Psaila, N. D.

Richardson, K.

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Rozhin, A. G.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
[CrossRef]

Sanghera, J. S.

Schweizer, T.

Shaw, L. B.

Shen, S.

Soundararajan, G.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008).
[CrossRef]

Sugimoto, N.

Sun, Z.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
[CrossRef]

Taccheo, S.

Takebe, H.

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids212(2-3), 143–150 (1997).
[CrossRef]

Thomson, R. R.

Tonchev, D.

Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).

Van Keuren, E. R.

E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys.73(7), 611–614 (2005).
[CrossRef]

Vlcek, M.

Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

Zhang, H.

Am. J. Phys. (1)

E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys.73(7), 611–614 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron.14(5), 1353–1360 (2008).
[CrossRef]

J. Non-Cryst. Solids (3)

Z. G. Ivanova, E. Cernoskova, Z. Cernosek, and M. Vlcek, “Features in the photoluminescence line-shape of heavily Er-doped Ge–S–Ga glasses,” J. Non-Cryst. Solids355(37-42), 1873–1876 (2009).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids212(2-3), 143–150 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (2)

C. D. Lezal, “Chalcogenide glasses—survey and progress,” J. Optoelectron. Adv. Mater.5, 23–34 (2003).

Z. G. Ivanov, D. Tonchev, R. Ganesan, E. S. R. Gopal, and S. O. Kasap, “Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses,” J. Optoelectron. Adv. Mater.7, 1863–1867 (2005).

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Opt. Express (6)

Opt. Lett. (2)

Other (1)

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications, Springer Series in Optical Sciences (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to characterize the Er-doped GeGaS waveguides.

Fig. 2
Fig. 2

(a) White light transmission micrograph of the optimum waveguide end-facet. (b) Image of the 1550 nm waveguide mode of the optimum waveguide.

Fig. 3
Fig. 3

The relative gain spectrum of the Er-doped GeGaS glass waveguide with a pump power of 500 mW at 980 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Relative gain ( RG ) = 10*log [ ( P out ( pump )  fluorescence ) /  P out ( no pump ) ],

Metrics