Abstract

We present a thiol-ene/methacrylate-based photopolymer capable of creating coplanar physical features (e.g. micro-fluidic channels) and optical index features (e.g. waveguides) using standard mask-based lithography techniques. This new photopolymer consists of two monomer species that polymerize at different rates. By selectively exposing different areas of a device for various amounts of time, we can select the state of the polymer (i.e. liquid, rubbery, or glassy) to create fluid channels or optical index structures such as waveguides. Using only three exposure steps and two masks, we demonstrate an integrated refractometer with a 90° channel-waveguide crossing to illustrate the fabrication process and the ability to create lithographically aligned waveguides across a gap.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010), p. 445.
  2. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
    [CrossRef]
  3. A. Sato, M. Scepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt.42(5), 778–784 (2003).
    [CrossRef] [PubMed]
  4. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007).
    [CrossRef] [PubMed]
  5. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol.7(10), 1445–1453 (1989).
    [CrossRef]
  6. C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett.33(22), 2575–2577 (2008).
    [CrossRef] [PubMed]
  7. D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
    [CrossRef]
  8. N. B. Cramer, J. W. Stansbury, and C. N. Bowman, “Recent advances and developments in composite dental restorative materials,” J. Dent. Res.90(4), 402–416 (2011).
    [CrossRef] [PubMed]
  9. J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
    [CrossRef] [PubMed]
  10. K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
    [CrossRef]
  11. C. Ye, K. T. Kamysiak, A. C. Sullivan, and R. R. McLeod, “Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer,” Opt. Express20(6), 6575–6583 (2012).
    [CrossRef] [PubMed]
  12. L. Dhar, A. Hale, H. E. Katz, M. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett.24(7), 487–489 (1999).
    [CrossRef] [PubMed]

2012

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

C. Ye, K. T. Kamysiak, A. C. Sullivan, and R. R. McLeod, “Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer,” Opt. Express20(6), 6575–6583 (2012).
[CrossRef] [PubMed]

2011

N. B. Cramer, J. W. Stansbury, and C. N. Bowman, “Recent advances and developments in composite dental restorative materials,” J. Dent. Res.90(4), 402–416 (2011).
[CrossRef] [PubMed]

2008

2007

2006

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

2004

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

2003

1999

1994

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

1989

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol.7(10), 1445–1453 (1989).
[CrossRef]

Anseth, K. S.

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Booth, B. L.

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol.7(10), 1445–1453 (1989).
[CrossRef]

Bowman, C. N.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

N. B. Cramer, J. W. Stansbury, and C. N. Bowman, “Recent advances and developments in composite dental restorative materials,” J. Dent. Res.90(4), 402–416 (2011).
[CrossRef] [PubMed]

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Cramer, N. B.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

N. B. Cramer, J. W. Stansbury, and C. N. Bowman, “Recent advances and developments in composite dental restorative materials,” J. Dent. Res.90(4), 402–416 (2011).
[CrossRef] [PubMed]

Dhar, L.

Gaipa, J. C.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

Good, B. T.

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Grabowski, M. W.

Hale, A.

Haraldsson, K. T.

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Hutchison, J. B.

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Kamysiak, K. T.

Katz, H. E.

Kostuk, R. K.

Luo, N.

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Matherly, E. M.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

McBride, M. K.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

McLeod, R. R.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

Nair, D. P.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

Sato, A.

Scepanovic, M.

Schilling, F. C.

Schilling, M.

Schnoes, M. G.

Sebra, R. P.

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Shandas, R.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

Stansbury, J. W.

N. B. Cramer, J. W. Stansbury, and C. N. Bowman, “Recent advances and developments in composite dental restorative materials,” J. Dent. Res.90(4), 402–416 (2011).
[CrossRef] [PubMed]

Sullivan, A. C.

Ye, C.

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

Adv. Funct. Mater.

D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride, E. M. Matherly, R. R. McLeod, R. Shandas, and C. N. Bowman, “Two-stage reactive polymer network forming systems,” Adv. Funct. Mater.22(7), 1502–1510 (2012).
[CrossRef]

Appl. Opt.

J. Dent. Res.

N. B. Cramer, J. W. Stansbury, and C. N. Bowman, “Recent advances and developments in composite dental restorative materials,” J. Dent. Res.90(4), 402–416 (2011).
[CrossRef] [PubMed]

J. Lightwave Technol.

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol.7(10), 1445–1453 (1989).
[CrossRef]

J. Mod. Opt.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

Lab Chip

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, and C. N. Bowman, “Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Lab Chip4(6), 658–662 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Sens. Actuators B Chem.

K. T. Haraldsson, J. B. Hutchison, R. P. Sebra, B. T. Good, K. S. Anseth, and C. N. Bowman, “3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP),” Sens. Actuators B Chem.113(1), 454–460 (2006).
[CrossRef]

Other

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010), p. 445.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cartoon of a coplanar microfluidic device that contains a fluid channel and a polymer waveguide crossing each other.

Fig. 2
Fig. 2

Polymer [a] shear modulus and [b] methacrylate and ene conversion versus exposure time. Both the rheology data and the conversion data were taken at 365 nm with an intensity of 13.7 mW/cm2.

Fig. 3
Fig. 3

Integrated optofluidic device processing steps. [a] UV light converts the liquid resin to a solid gel where the mask is transparent. [b] Unexposed monomer remains liquid. [c] Uncured monomer is removed using suction and/or a solvent wash. [d] UV light further polymerizes the illuminated areas, causing a monomer gradient in the sample. [e] The exposed polymer is depleted of monomer, resulting in a gradient in the monomer concentration. [f] The sample is held at elevated temperature for several days to allow for monomer to diffusion into the region exposed in step [d] as shown by the arrows. [g] A final flood cure is performed to fix the optical features and consume remaining monomer in the sample. [h] The final device contains a fluid channel and cured polymer with a line of high-index polymer surrounded by a lower-index polymer.

Fig. 4
Fig. 4

Images of assembled devices. [a] A finished device is attached to a base, while a FC/PC connector is attached to a 3-D stage to allow alignment of the fiber to the polymer waveguide. A microscope objective re-images the end of the waveguide for analysis. [b] Once the fiber is aligned to the waveguide, the FC/PC connector is disconnected from the stage and attached to the base of the device which allows for portability. [c] The fully assembled device with attached detector, fiber, and syringe with water.

Fig. 5
Fig. 5

Images of functioning devices. [a] A waveguide only device with a butt-coupled SMF-28 fiber attached on the right. The light on the left side of the waveguide travels to a 10X microscope used to magnify the output. The output face of the waveguide is reimaged and shown in [b]. [c, d] Refractometer devices containing a fluid channel (vertical) and a waveguide (horizontal). In [c] the channel contains air. In [d] the channel contains water.

Fig. 6
Fig. 6

Phase microscope images from [a] a waveguide only device and [b] a refractometer device.

Metrics