Abstract

We report the fabrication of silica microstructured optical fibers with the core exposed along the whole length, and characterize the stability of these new fibers when exposed to some typical sensing and storage environments. We show the fiber loss to be the best achieved to date for exposed-core fibers, while the deterioration in the transmission properties is up to ∼2 orders of magnitude better than for the previously reported exposed-core fibers produced in soft glass. This opens up new opportunities for optical fiber sensors requiring long term and/or harsh environmental applications while providing real time analysis anywhere along the fibers length.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  3. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
    [CrossRef]
  4. T. Monro, D. Richardson, and P. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
    [CrossRef]
  5. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
    [CrossRef] [PubMed]
  6. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
    [CrossRef]
  7. J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers—fundamentals and applications.” J. Am. Ceram. Soc.89, 2–12 (2006).
  8. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
    [CrossRef]
  9. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
    [CrossRef] [PubMed]
  10. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
    [CrossRef] [PubMed]
  11. K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
    [CrossRef]
  12. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082–5087 (2004).
    [CrossRef] [PubMed]
  13. J. Leong, P. Petropoulos, J. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. Monro, and D. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol.24, 183–190 (2006).
    [CrossRef]
  14. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13, 5883–5889 (2005).
    [CrossRef] [PubMed]
  15. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007).
    [CrossRef]
  16. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
    [CrossRef]
  17. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20, 5344–5355 (2012).
    [CrossRef] [PubMed]
  18. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
    [CrossRef]
  19. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
    [CrossRef] [PubMed]
  20. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15, 17819–17826 (2007).
    [CrossRef] [PubMed]
  21. H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express16, 8300–8305 (2008).
    [CrossRef] [PubMed]
  22. A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
    [CrossRef]
  23. J. E. Debs, H. Ebendorff-Heidepriem, J. S. Quinton, and T. M. Monro, “A fundamental study into the surface functionalization of soft glass microstructured optical fibers via silane coupling agents,” J. Lightwave Technol.27, 576–582 (2009).
    [CrossRef]
  24. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt.42, 3509–3515 (2003).
    [CrossRef] [PubMed]
  25. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
    [CrossRef]
  26. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett.32, 1575–1577 (2007).
    [CrossRef] [PubMed]
  27. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express15, 8731–8736 (2007).
    [CrossRef] [PubMed]
  28. J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
    [CrossRef]
  29. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express15, 11843–11848 (2007).
    [CrossRef] [PubMed]
  30. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
    [CrossRef]
  31. S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
    [CrossRef]
  32. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct.20, 013002 (2011).
    [CrossRef]
  33. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2, 432–442 (2012).
    [CrossRef]
  34. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
    [CrossRef] [PubMed]
  35. S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).
  36. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
    [CrossRef]
  37. M. Li and D. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008).
    [CrossRef]
  38. Heraeus Quarzglas GmbH & Co. KG, Pure Silica Rods for Specialty Fiber Applications, 1st ed. (2012), http://heraeus-quarzglas.com/ .
  39. D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009).
    [CrossRef]
  40. M. Y. Sim and S. Gleixner, “Studying the etch rates and selectivity of SiO2 and Al in BHF solutions,” in 2006 16th Biennial University/Government/Industry Microelectronics Symposium (2006), pp. 225–228.
  41. C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: the effects of preform rotation,” J. Lightwave Technol.26, 791–798 (2008).
    [CrossRef]
  42. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
    [CrossRef] [PubMed]
  43. D. Tallant, T. Michalske, and W. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids106, 380–383 (1988).
    [CrossRef]
  44. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
    [CrossRef]
  45. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express15, 13805–13816 (2007).
    [CrossRef] [PubMed]
  46. R. Brandsch, G. Bar, and M.-H. Whangbo, “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy,” Langmuir13, 6349–6353 (1997).
    [CrossRef]

2012

2011

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct.20, 013002 (2011).
[CrossRef]

2010

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

2009

D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

J. E. Debs, H. Ebendorff-Heidepriem, J. S. Quinton, and T. M. Monro, “A fundamental study into the surface functionalization of soft glass microstructured optical fibers via silane coupling agents,” J. Lightwave Technol.27, 576–582 (2009).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

2008

2007

C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett.32, 1575–1577 (2007).
[CrossRef] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express15, 8731–8736 (2007).
[CrossRef] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express15, 11843–11848 (2007).
[CrossRef] [PubMed]

G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express15, 13805–13816 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15, 17819–17826 (2007).
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007).
[CrossRef]

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

2006

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers—fundamentals and applications.” J. Am. Ceram. Soc.89, 2–12 (2006).

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

J. Leong, P. Petropoulos, J. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. Monro, and D. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol.24, 183–190 (2006).
[CrossRef]

2005

2004

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082–5087 (2004).
[CrossRef] [PubMed]

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt.42, 3509–3515 (2003).
[CrossRef] [PubMed]

2002

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

2001

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

1999

T. Monro, D. Richardson, and P. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

1997

R. Brandsch, G. Bar, and M.-H. Whangbo, “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy,” Langmuir13, 6349–6353 (1997).
[CrossRef]

1996

1988

D. Tallant, T. Michalske, and W. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids106, 380–383 (1988).
[CrossRef]

1973

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).

Abuknesha, R. A.

D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009).
[CrossRef]

Afshar V., S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Asimakis, S.

Atkin, D. M.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

Bang, O.

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13, 5883–5889 (2005).
[CrossRef] [PubMed]

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Bar, G.

R. Brandsch, G. Bar, and M.-H. Whangbo, “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy,” Langmuir13, 6349–6353 (1997).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

Bennett, P.

T. Monro, D. Richardson, and P. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

Birks, T. A.

Bjarklev, A.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers—fundamentals and applications.” J. Am. Ceram. Soc.89, 2–12 (2006).

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13, 5883–5889 (2005).
[CrossRef] [PubMed]

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Bozolan, A.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Brambilla, G.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

Brandsch, R.

R. Brandsch, G. Bar, and M.-H. Whangbo, “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy,” Langmuir13, 6349–6353 (1997).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

Broeng, J.

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Canning, J.

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
[CrossRef]

Chesini, G.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Chinnappan, R.

Cordeiro, C. M. B.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express15, 11843–11848 (2007).
[CrossRef] [PubMed]

Cox, F. M.

Cruz, C. H. B.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Davis, C.

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

de Matos, C. J. S.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Debs, J. E.

dos Santos, E. M.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2, 432–442 (2012).
[CrossRef]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

J. E. Debs, H. Ebendorff-Heidepriem, J. S. Quinton, and T. M. Monro, “A fundamental study into the surface functionalization of soft glass microstructured optical fibers via silane coupling agents,” J. Lightwave Technol.27, 576–582 (2009).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15, 17819–17826 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
[CrossRef] [PubMed]

J. Leong, P. Petropoulos, J. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. Monro, and D. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol.24, 183–190 (2006).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082–5087 (2004).
[CrossRef] [PubMed]

Emiliyanov, G.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
[CrossRef]

Facincani, T.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
[CrossRef]

Feng, X.

Finazzi, V.

Fitt, A. D.

Foo, T. C.

Frampton, K.

François, A.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Fujiwara, M.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Gayraud, N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

Gibson, B.

Gleixner, S.

M. Y. Sim and S. Gleixner, “Studying the etch rates and selectivity of SiO2 and Al in BHF solutions,” in 2006 16th Biennial University/Government/Industry Microelectronics Symposium (2006), pp. 225–228.

Griffiths, B. C.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

Grivas, C.

Groothoff, N.

Gu, C.

Hand, D. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Heng, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Hewak, D.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Hirao, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Ho, H. L.

Hoffmann, P.

Hoiby, P.

Hoo, Y. L.

Hou, L.

Hougaard, K.

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Huntington, S.

Jeganathan, F.

D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009).
[CrossRef]

Jensen, J.

Jensen, J. B.

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Jin, G.

Jin, W.

Kasier, P.

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).

Kiang, K.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Knight, J. C.

Knight, K.

Koizumi, F.

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Kuan, K.

Lægsgaard, J.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers—fundamentals and applications.” J. Am. Ceram. Soc.89, 2–12 (2006).

Laegsgaard, J.

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Large, M. C. J.

Larsen, T. T.

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Leong, J.

Li, M.

Liu, J.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Lwin, R.

MacPherson, W. N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

Marcatili, E. A. J.

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).

Markov, A.

Martelli, C.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Mazhorova, A.

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

McAdam, G.

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

McNaghten, E. D.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

Michalske, T.

D. Tallant, T. Michalske, and W. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids106, 380–383 (1988).
[CrossRef]

Miller, S. E.

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).

Monro, T.

S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

J. Leong, P. Petropoulos, J. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. Monro, and D. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol.24, 183–190 (2006).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082–5087 (2004).
[CrossRef] [PubMed]

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

T. Monro, D. Richardson, and P. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

Monro, T. M.

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2, 432–442 (2012).
[CrossRef]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

J. E. Debs, H. Ebendorff-Heidepriem, J. S. Quinton, and T. M. Monro, “A fundamental study into the surface functionalization of soft glass microstructured optical fibers via silane coupling agents,” J. Lightwave Technol.27, 576–582 (2009).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: the effects of preform rotation,” J. Lightwave Technol.26, 791–798 (2008).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15, 17819–17826 (2007).
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

Moore, R.

Ng, A.

Nolan, D.

Oermann, M. R.

Olivero, P.

Ong, J. S. K.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Parkes, A. M.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

Parry, J. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

Pedersen, L.

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct.20, 013002 (2011).
[CrossRef]

Petropoulos, P.

Petrovich, M. N.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007).
[CrossRef]

Price, J.

Price, R. G.

D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009).
[CrossRef]

Quinton, J. S.

Richardson, D.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007).
[CrossRef]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express15, 8731–8736 (2007).
[CrossRef] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

Richardson, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Riishede, J.

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Ruan, S. C.

Ruan, Y.

Russell, P. S. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
[CrossRef]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21, 1547–1549 (1996).
[CrossRef] [PubMed]

Rutt, H.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007).
[CrossRef]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
[CrossRef]

Schartner, E. P.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15, 17819–17826 (2007).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Shi, C.

Sim, M. Y.

M. Y. Sim and S. Gleixner, “Studying the etch rates and selectivity of SiO2 and Al in BHF solutions,” in 2006 16th Biennial University/Government/Industry Microelectronics Symposium (2006), pp. 225–228.

Sinchenko, E.

S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

Skorobogata, O.

Skorobogatiy, M.

Smith, W.

D. Tallant, T. Michalske, and W. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids106, 380–383 (1988).
[CrossRef]

Sorensen, T.

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Stoddart, P.

S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

Takeuchi, S.

Tallant, D.

D. Tallant, T. Michalske, and W. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids106, 380–383 (1988).
[CrossRef]

Tong, L.

G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express15, 13805–13816 (2007).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Toubaru, K.

Tucknott, J.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

van Brakel, A.

Vaz, A. R.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

Voyce, C. J.

Wang, D. N.

Warren-Smith, S.

S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Warren-Smith, S. C.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007).
[CrossRef]

Whangbo, M.-H.

R. Brandsch, G. Bar, and M.-H. Whangbo, “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy,” Langmuir13, 6349–6353 (1997).
[CrossRef]

White, R. T.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

Wildeboer, D.

D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

Xu, F.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

Yan, H.

Yang, C.

Zhai, G.

Zourob, M.

Anal. Biochem.

D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009).
[CrossRef]

Anal. Chem.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

Appl. Opt.

Bell Sys. Tech. J.

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).

Electron. Lett.

T. Monro, D. Richardson, and P. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

Int. J. Appl. Glass Sci.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

J. Am. Ceram. Soc.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers—fundamentals and applications.” J. Am. Ceram. Soc.89, 2–12 (2006).

J. Appl. Phys.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

D. Tallant, T. Michalske, and W. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids106, 380–383 (1988).
[CrossRef]

Langmuir

R. Brandsch, G. Bar, and M.-H. Whangbo, “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy,” Langmuir13, 6349–6353 (1997).
[CrossRef]

Mater. Forum

S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).

Meas. Sci. Technol.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007).
[CrossRef]

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Opt. Eng.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007).
[CrossRef]

Opt. Express

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082–5087 (2004).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13, 5883–5889 (2005).
[CrossRef] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express15, 8731–8736 (2007).
[CrossRef] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express15, 11843–11848 (2007).
[CrossRef] [PubMed]

G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express15, 13805–13816 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15, 17819–17826 (2007).
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
[CrossRef] [PubMed]

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20, 5344–5355 (2012).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express16, 8300–8305 (2008).
[CrossRef] [PubMed]

Opt. Fiber Technol.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Opt. Lett.

Opt. Mater. Express

Proc. SPIE

A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004).
[CrossRef]

Sensors

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

Smart Mater. Struct.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct.20, 013002 (2011).
[CrossRef]

Other

Heraeus Quarzglas GmbH & Co. KG, Pure Silica Rods for Specialty Fiber Applications, 1st ed. (2012), http://heraeus-quarzglas.com/ .

M. Y. Sim and S. Gleixner, “Studying the etch rates and selectivity of SiO2 and Al in BHF solutions,” in 2006 16th Biennial University/Government/Industry Microelectronics Symposium (2006), pp. 225–228.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross section of the preform fabricated from Ø12 mm F300HQ silica rod; and, scanning electron microscope images of (b) the silica exposed-core fiber with (c) the cross section measured at the maximum to be Ø202 μm; and, (d) an enlarged image of the core having an effective diameter of 10.0μm.

Fig. 2
Fig. 2

(a) Loss of silica exposed-core fiber, broadband cutback measurements taken 26 days apart (red and blue) compared to silica suspended-core fiber with similar core size (black); and, (b) fiber Raman peaks at 532 nm.

Fig. 3
Fig. 3

Deterioration in the transmission properties of the silica exposed-core fiber when exposed to (a) air; and, (b) water.

Fig. 4
Fig. 4

Tapping Mode Atomic Force Microscopy images of the exposed-core fibers exposed to (a)–(c) air, (d)–(f) water and (g)–(i) methanol with (j) a coherence scanning interferometer image along the methanol exposed core region. (a), (d) and (g) show the phase images across the core region indicated by the 12 μm area on the x-axis, with [(b), (e) and (h) respectively] enlarged phase images of the area shown by the green box; and, (c), (f) and (i) showing their respective topologies.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P λ , t = P λ , 0 10 - ξ t / 10

Metrics