Abstract

In this work, a study of the temporal dynamical behavior of IR-visible up-conversion in the LiNbO3: Er3+/Yb3+ system under modulated IR excitation at 980 nm is presented. It is shown that modulation characteristics, including the relative green-to-red emission ratio (GRR), can be quantitatively explained by using the rate equations formalism. The relevant spectroscopic magnitudes are identified and this provides a general framework to explore the properties of other Er3+/Yb3+ doped up-converting phosphors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
    [CrossRef]
  2. T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
    [CrossRef]
  3. N. Tansu and L. J. Mawst, “High-performance, strain compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum well diode lasers,” IEEE Photon. Technol. Lett.13(3), 179–181 (2001).
    [CrossRef]
  4. N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron.9(5), 1220–1227 (2003).
    [CrossRef]
  5. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
    [CrossRef]
  6. V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
    [CrossRef]
  7. N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
    [CrossRef]
  8. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
    [CrossRef]
  9. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003).
    [CrossRef]
  10. N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum well laser active regions,” IEEE J. Quantum Electron.39(10), 1205–1210 (2003).
    [CrossRef]
  11. L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
    [CrossRef]
  12. M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
    [CrossRef]
  13. M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
    [CrossRef]
  14. A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
    [CrossRef]
  15. L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972).
    [CrossRef]
  16. F. Vetrone and J. A. Capobianco, “Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications,” Int. J. Nanotechnol.5(9/10/11/12), 1306–1339 (2008).
    [CrossRef]
  17. C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
    [PubMed]
  18. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl.50(26), 5808–5829 (2011).
    [CrossRef] [PubMed]
  19. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38(4), 976–989 (2009).
    [CrossRef] [PubMed]
  20. C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
    [CrossRef]
  21. C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
    [CrossRef] [PubMed]
  22. A. Chavez-Pirson, “Highly doped phosphate glass fibers for fiber lasers and amplifiers with applications,” Proc. SPIE7839, 78390K (2010).
    [CrossRef]
  23. M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
    [CrossRef] [PubMed]
  24. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
    [CrossRef] [PubMed]
  25. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41(3), 1323–1349 (2012).
    [CrossRef] [PubMed]
  26. E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998).
    [CrossRef]
  27. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  28. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
    [CrossRef]
  29. G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
    [CrossRef]
  30. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
    [CrossRef] [PubMed]
  31. T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
    [CrossRef]
  32. Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
    [CrossRef]
  33. A. M. Barnett, “Seeing, red, yellow and green in a semiconductor alfanumeric display,” Electronics43(10), 88–93 (1970).
  34. H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
    [CrossRef]
  35. A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Role of pump duration on temperature and efficiency of up-conversion in fluoride crystals co-doped with ytterbium and thulium,” Opt. Express12(21), 5215–5220 (2004).
    [CrossRef] [PubMed]
  36. E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000).
    [CrossRef]
  37. L. Nuñez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B62(5), 485–491 (1996).
    [CrossRef]
  38. E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
    [CrossRef]
  39. M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
    [CrossRef]
  40. E. Cantelar and F. Cusso, “Competitive up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3,” J. Lumin.102–103, 525–531 (2003).
    [CrossRef]
  41. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
    [CrossRef]
  42. B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996).
    [CrossRef]
  43. D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997).
    [CrossRef]
  44. V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
    [CrossRef]
  45. J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals,” Nano Lett.7(3), 847–852 (2007).
    [CrossRef] [PubMed]
  46. N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
    [CrossRef]
  47. Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
    [CrossRef]
  48. J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
    [CrossRef]

2012

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

2011

M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
[CrossRef] [PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl.50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

2010

N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
[CrossRef]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

A. Chavez-Pirson, “Highly doped phosphate glass fibers for fiber lasers and amplifiers with applications,” Proc. SPIE7839, 78390K (2010).
[CrossRef]

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

2009

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38(4), 976–989 (2009).
[CrossRef] [PubMed]

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

2008

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

F. Vetrone and J. A. Capobianco, “Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications,” Int. J. Nanotechnol.5(9/10/11/12), 1306–1339 (2008).
[CrossRef]

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

2007

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals,” Nano Lett.7(3), 847–852 (2007).
[CrossRef] [PubMed]

2005

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

2004

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Role of pump duration on temperature and efficiency of up-conversion in fluoride crystals co-doped with ytterbium and thulium,” Opt. Express12(21), 5215–5220 (2004).
[CrossRef] [PubMed]

2003

E. Cantelar and F. Cusso, “Competitive up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3,” J. Lumin.102–103, 525–531 (2003).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum well laser active regions,” IEEE J. Quantum Electron.39(10), 1205–1210 (2003).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron.9(5), 1220–1227 (2003).
[CrossRef]

2002

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

2001

N. Tansu and L. J. Mawst, “High-performance, strain compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum well diode lasers,” IEEE Photon. Technol. Lett.13(3), 179–181 (2001).
[CrossRef]

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

2000

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000).
[CrossRef]

1999

V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
[CrossRef]

1998

E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998).
[CrossRef]

1997

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997).
[CrossRef]

1996

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996).
[CrossRef]

L. Nuñez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B62(5), 485–491 (1996).
[CrossRef]

1972

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972).
[CrossRef]

1970

A. M. Barnett, “Seeing, red, yellow and green in a semiconductor alfanumeric display,” Electronics43(10), 88–93 (1970).

Aebischer, A.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Ahrens, B.

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

Amin, J.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997).
[CrossRef]

Aust, J. A.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

Bank, S. R.

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

Barnett, A. M.

A. M. Barnett, “Seeing, red, yellow and green in a semiconductor alfanumeric display,” Electronics43(10), 88–93 (1970).

Bass, M.

Bausa, M. L.

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

Bedford, R.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Bettinelli, M.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Biernacki, S. W.

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

Biner, D.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Bour, D.

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Boyer, J. C.

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals,” Nano Lett.7(3), 847–852 (2007).
[CrossRef] [PubMed]

Cantelar, E.

M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
[CrossRef] [PubMed]

N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
[CrossRef]

E. Cantelar and F. Cusso, “Competitive up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3,” J. Lumin.102–103, 525–531 (2003).
[CrossRef]

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000).
[CrossRef]

E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998).
[CrossRef]

Cantos, B. D.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Cao, C.

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Capobianco, J. A.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

F. Vetrone and J. A. Capobianco, “Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications,” Int. J. Nanotechnol.5(9/10/11/12), 1306–1339 (2008).
[CrossRef]

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals,” Nano Lett.7(3), 847–852 (2007).
[CrossRef] [PubMed]

Carey, G. P.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Carico, R.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Cassanho, A.

Chang, Y.-L.

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Chatterjee, D. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Chavez-Pirson, A.

A. Chavez-Pirson, “Highly doped phosphate glass fibers for fiber lasers and amplifiers with applications,” Proc. SPIE7839, 78390K (2010).
[CrossRef]

Chen, G. Y.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Corzine, S.

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Csaszar, I.

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

Cuccia, L. A.

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals,” Nano Lett.7(3), 847–852 (2007).
[CrossRef] [PubMed]

Cusso, F.

N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
[CrossRef]

E. Cantelar and F. Cusso, “Competitive up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3,” J. Lumin.102–103, 525–531 (2003).
[CrossRef]

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000).
[CrossRef]

E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998).
[CrossRef]

L. Nuñez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B62(5), 485–491 (1996).
[CrossRef]

Cussó, F.

M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
[CrossRef] [PubMed]

Dato, R.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Di, Y.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Di Paolo, R. E.

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

Dierolf, V.

V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
[CrossRef]

Earman, A. M.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Fallahi, M.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Fan, L.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Finander, M. J.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Gambin, V.

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Gao, H.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Gao, Y.

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Gary, J. M.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Giaretta, G.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Gnanasammandhan, M. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Goddard, L. L.

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

Grimm, J.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Grinberg, M.

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

Gudel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Güdel, H. U.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Guggenheim, H. J.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972).
[CrossRef]

Guo, L.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

Ha, W.

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl.50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Hader, J.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Hallstein, S.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Harris, J. S.

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

Heer, S.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Henke, B.

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

Hessenius, C.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Hitchens, W. R.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Hofler, H.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Huang, Y.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

Jansen, M.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Jenssen, H.

Jin, Y.

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Johnson, J. A.

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

Johnson, L. F.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972).
[CrossRef]

Kaminska, A.

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

Kaneda, Y.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Kim, S. M.

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

Koch, S. W.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Kocot, C. P.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Krämer, K. W.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Krueger, J.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Kunert, B.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Kutsenko, A. B.

V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
[CrossRef]

Lee, D.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Lejus, A. M.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996).
[CrossRef]

Li, A.

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Li, A. H.

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Li, F.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Li, H.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Lifante, G.

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000).
[CrossRef]

L. Nuñez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B62(5), 485–491 (1996).
[CrossRef]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lim, S.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Liu, B.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

Liu, X.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38(4), 976–989 (2009).
[CrossRef] [PubMed]

Liu, Y.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lü, Q.

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Luan, H.-C.

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Luthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Mangiarini, F.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Mao, C.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Mawst, L. J.

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron.9(5), 1220–1227 (2003).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum well laser active regions,” IEEE J. Quantum Electron.39(10), 1205–1210 (2003).
[CrossRef]

N. Tansu and L. J. Mawst, “High-performance, strain compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum well diode lasers,” IEEE Photon. Technol. Lett.13(3), 179–181 (2001).
[CrossRef]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

Mi, C.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Miclea, P.-T.

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

Milliez, J.

Moloney, J. V.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Mooradian, A.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Mori, T.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

Muñoz, J. A.

E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998).
[CrossRef]

Murray, J.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Naccache, R.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Naruke, H.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

Nevado, R.

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000).
[CrossRef]

Niven, G.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Nuñez, L.

L. Nuñez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B62(5), 485–491 (1996).
[CrossRef]

Nuñez, N.

N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
[CrossRef]

Núñez, N. O.

M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
[CrossRef] [PubMed]

Ocaña, M.

M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
[CrossRef] [PubMed]

N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
[CrossRef]

Okuno, Y.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Ostermayer, F. W.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972).
[CrossRef]

Paßlick, C.

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

Passuello, T.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Patterson, F. G.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

Pedroni, M.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Pelaprat, J.-M.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Peng, H.

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Peng, H. Y.

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Piccinelli, F.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Qin, W.

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Quintanilla, M.

M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
[CrossRef] [PubMed]

N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
[CrossRef]

Ramirez, M.

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

Rao, Z.

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

Rapaport, A.

Reinhard, C.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Rich, T. C.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972).
[CrossRef]

Sandmann, C.

V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
[CrossRef]

Sanz-Garcia, J. A.

E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998).
[CrossRef]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl.50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Scholz, K.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Schweizer, S.

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

Shchegrov, A. V.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Simondi-Teisseire, B.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996).
[CrossRef]

Sohler, W.

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

Somesfalean, G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

Speghini, A.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

Stolz, W.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

Suche, H.

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

Suchocki, A.

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

Sun, Q.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

Suyver, J. F.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Takeuchi, T.

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Tallian, F.

V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
[CrossRef]

Tan, M.

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Tandon, A.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Tansu, N.

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron.9(5), 1220–1227 (2003).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum well laser active regions,” IEEE J. Quantum Electron.39(10), 1205–1210 (2003).
[CrossRef]

N. Tansu and L. J. Mawst, “High-performance, strain compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum well diode lasers,” IEEE Photon. Technol. Lett.13(3), 179–181 (2001).
[CrossRef]

Twist, R.

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Umbrasas, A.

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Veasey, D. L.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997).
[CrossRef]

Vetrone, F.

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

F. Vetrone and J. A. Capobianco, “Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications,” Int. J. Nanotechnol.5(9/10/11/12), 1306–1339 (2008).
[CrossRef]

Viana, B.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996).
[CrossRef]

Vivien, D.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996).
[CrossRef]

Von Der Osten, A. N. D. W.

V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38(4), 976–989 (2009).
[CrossRef] [PubMed]

Wang, F. P.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

Wang, G.

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Wang, L.

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Wang, M.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Wang, Y.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Watson, J. P.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Wei, G.

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Wen, Y.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

Wistey, M.

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

Wistey, M. A.

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

Wu, X.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Wu, Y.

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Wu, Y. J.

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Xu, S.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Xu, Z.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

Yamase, T.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

Yeh, J. Y.

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron.9(5), 1220–1227 (2003).
[CrossRef]

Yeh, J.-Y.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

Yuen, H.

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

Yuen, H. B.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Zhang, F.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

Zhang, J.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

Zhang, Y.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Zhang, Y. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

Zhang, Z. G.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

Zhou, J.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl.50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Appl. Phys. B

L. Nuñez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B62(5), 485–491 (1996).
[CrossRef]

V. Dierolf, A. B. Kutsenko, C. Sandmann, F. Tallian, and A. N. D. W. Von Der Osten, “Towards new lasers in Ti:ER:LiNbO3 waveguides: a study of the excited ER3+ states,” Appl. Phys. B68(5), 767–775 (1999).
[CrossRef]

Appl. Phys. Lett.

G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Bright white upconversion luminesence in rare-earth-ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett.91(13), 133103 (2007).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ = 1.55 μm,” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

Chem. Rev.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev.41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38(4), 976–989 (2009).
[CrossRef] [PubMed]

Electronics

A. M. Barnett, “Seeing, red, yellow and green in a semiconductor alfanumeric display,” Electronics43(10), 88–93 (1970).

IEEE J. Quantum Electron.

N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum well laser active regions,” IEEE J. Quantum Electron.39(10), 1205–1210 (2003).
[CrossRef]

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modelling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480nm,” IEEE J. Quantum Electron.33(10), 1647–1662 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris, “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron.8(4), 795–800 (2002).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron.9(5), 1220–1227 (2003).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.20(20), 1700–1702 (2008).
[CrossRef]

N. Tansu and L. J. Mawst, “High-performance, strain compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum well diode lasers,” IEEE Photon. Technol. Lett.13(3), 179–181 (2001).
[CrossRef]

Int. J. Nanotechnol.

F. Vetrone and J. A. Capobianco, “Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications,” Int. J. Nanotechnol.5(9/10/11/12), 1306–1339 (2008).
[CrossRef]

J. Alloy. Comp.

E. Cantelar, R. E. Di Paolo, F. Cusso, R. Nevado, G. Lifante, W. Sohler, and H. Suche, “Spectroscopy of Er3+ in Zn-diffused LiNbO3 waveguides,” J. Alloy. Comp.323–324, 348–350 (2001).
[CrossRef]

J. Appl. Phys.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys.43(3), 1125–1137 (1972).
[CrossRef]

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris, “Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005).
[CrossRef]

J. Lumin.

E. Cantelar and F. Cusso, “Competitive up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3,” J. Lumin.102–103, 525–531 (2003).
[CrossRef]

J. Nanopart. Res.

N. Nuñez, M. Quintanilla, E. Cantelar, F. Cusso, and M. Ocaña, “Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid,” J. Nanopart. Res.12(7), 2553–2565 (2010).
[CrossRef]

J. Nanosci. Nanotechnol.

C. Cao, W. Qin, J. Zhang, J. Zhang, Y. Wang, Y. Jin, G. Wei, G. Wang, and L. Wang, “Multicolor up-conversion emission of Tm3+/Er3+/Yb3+ tri-doped YF3 phosphors,” J. Nanosci. Nanotechnol.8(3), 1384–1387 (2008).
[PubMed]

J. Phys. Condens. Matter

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

E. Cantelar, J. A. Muñoz, J. A. Sanz-Garcia, and F. Cusso, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter10(39), 8893–8903 (1998).
[CrossRef]

J. Solid State Chem.

J. Zhang, Y. Wang, L. Guo, F. Zhang, Y. Wen, B. Liu, and Y. Huang, “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE=Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem.184(8), 2178–2183 (2011).
[CrossRef]

Mater. Sci. Eng. B

Q. Lü, Y. J. Wu, A. H. Li, Y. Wang, Y. Gao, and H. Y. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, “Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb3+ nanoparticles,” Mater. Sci. Eng. B176(14), 1041–1046 (2011).
[CrossRef]

Nano Lett.

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals,” Nano Lett.7(3), 847–852 (2007).
[CrossRef] [PubMed]

Nanoscale

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale2(7), 1141–1148 (2010).
[CrossRef] [PubMed]

M. Quintanilla, N. O. Núñez, E. Cantelar, M. Ocaña, and F. Cussó, “Tuning from blue to magenta the up-converted emissions of YF3:Tm3+/Yb3+ nanocrystals,” Nanoscale3(3), 1046–1052 (2011).
[CrossRef] [PubMed]

Nature

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater.6(4), 267–274 (1996).
[CrossRef]

T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, “White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6,” Opt. Mater.33(4), 643–646 (2011).
[CrossRef]

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater.31(10), 1483–1487 (2009).
[CrossRef]

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Opt. Quantum Electron.

E. Cantelar, R. Nevado, G. Lifante, and F. Cusso, “Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides,” Opt. Quantum Electron.32(6-8), 819–827 (2000).
[CrossRef]

Phys. Rev. B

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

M. Ramirez, M. L. Bausa, S. W. Biernacki, A. Kaminska, A. Suchocki, and M. Grinberg, “Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals,” Phys. Rev. B72(22), 224104 (2005).
[CrossRef]

Proc. SPIE

A. Chavez-Pirson, “Highly doped phosphate glass fibers for fiber lasers and amplifiers with applications,” Proc. SPIE7839, 78390K (2010).
[CrossRef]

C. Paßlick, B. Henke, I. Csaszar, B. Ahrens, P.-T. Miclea, J. A. Johnson, and S. Schweizer, “Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics,” Proc. SPIE7772, 77720A (2010).
[CrossRef]

M. Jansen, G. P. Carey, R. Carico, R. Dato, A. M. Earman, M. J. Finander, G. Giaretta, S. Hallstein, H. Hofler, C. P. Kocot, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “Visible laser sources for projection displays,” Proc. SPIE6489, 648908 (2007).
[CrossRef]

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology,” Proc. SPIE5737, 113–119 (2005).
[CrossRef]

Small

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: PDF (30 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A comparison of two emission spectra measured using symmetric square pulses of different width: 1 ms (black dotted line) and 60 ms (red solid line) width. The inset shows the power dependence of both emission bands, presented in double logarithmic representation (Media 1).

Fig. 2
Fig. 2

Green (2H11/2:4S3/24I15/2) and red (4F9/24I15/2) emission areas as a function of the excitation pulse width.

Fig. 3
Fig. 3

Schematic diagram showing the processes involved in the population of the upper Er3+ manifolds responsible of the green (a) and red (b) emissions, after Yb3+ excitation at 980 nm.

Fig. 4
Fig. 4

Population dynamics calculated by numerical integration of Eqs. (1)-(7) with square pulse excitation of variable width: (a) 300 μs, (b) 3 ms and (c) 30 ms.

Fig. 5
Fig. 5

Temporal evolution of the green and red luminescence, measured (symbols) and calculated (solid lines) for pulses of 3 ms and 20 ms width, (a) and (b) respectively.

Fig. 6
Fig. 6

Green to red ratio (GRR) as a function of the excitation pulse width.

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters of LiNbO3:Er3+/Yb3+

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d N 7 dt = R 57 N 5 + C 27 N 2 N 5 N 7 τ 7
d N 6 dt =( A 76 + W 76 NR ) N 7 + C 26 N 2 N 4 N 6 τ 6
d N 5 dt = A 75 N 7 +( A 65 + W 65 NR ) N 6 + R 35 N 3 + C 25 N 2 N 3 C 52 N 5 N 1 C 27 N 2 N 5 ( R 57 + 1 τ 5 ) N 5
d N 4 dt = A 74 N 7 + A 64 N 6 +( A 54 + W 54 NR ) N 5 C 26 N 2 N 4 N 4 τ 4
N 3 = N Er N 7 N 6 N 5 N 4
d N 2 dt = R 12 N 1 + C 52 N 5 N 1 C 25 N 2 N 3 C 27 N 2 N 5 C 26 N 2 N 4 N 2 τ 2
N 1 = N Yb N 2
W ij NR = τ i 1 j A ij
R mn (λ)= σ mn (λ) hc/λ × I exc

Metrics