Abstract

Bragg gratings were inscribed in H2-loaded SMF-28e optical fibers and measured for axial stress changes for various exposure doses. Mean refractive index changes as high as 7.5 × 10−3 were observed under cw-244 nm irradiation of 143 W/cm2. Bragg grating reflectivity >99% was achieved for 0.7 mm long (1/e2) gratings. Axial stress measurements realized before and after UV exposure of the fibers, show two competing dose-dependent photosensitivity mechanisms: Negative stress changes at the early stages of exposure and positive stress changes for high exposures.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
    [CrossRef]
  2. D. P. Hand and P. S. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett.15(2), 102–104 (1990).
    [CrossRef] [PubMed]
  3. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett.20(11), 1346–1348 (1995).
    [CrossRef] [PubMed]
  4. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
    [CrossRef]
  5. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B19(8), 1759–1765 (2002).
    [CrossRef]
  6. J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
    [CrossRef]
  7. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
    [CrossRef]
  8. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
    [CrossRef]
  9. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4–5.4-eV ultraviolet light,” Opt. Lett.24(11), 729–731 (1999).
    [CrossRef] [PubMed]
  10. Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999).
    [CrossRef]
  11. H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express15(9), 5610–5615 (2007).
    [CrossRef] [PubMed]
  12. C. Ban, H. G. Limberger, V. Mashinsky, and E. Dianov, “Photosensitivity and stress changes of Ge-free Bi-Al doped silica optical fibers under ArF excimer laser irradiation,” Opt. Express19(27), 26859–26865 (2011).
    [CrossRef] [PubMed]
  13. J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys.50(5), 3702–3706 (1979).
    [CrossRef]
  14. C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001).
    [CrossRef]
  15. B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
    [CrossRef]
  16. C. M. Smith and N. F. Borrelli, “Behavior of 157 nm excimer-laser-induced refractive index changes in silica,” J. Opt. Soc. Am. B23(9), 1815–1821 (2006).
    [CrossRef]
  17. G. Violakis, N. Aggarwal, and H. G. Limberger, “Stress changes induced by cw-244-nm Ar+ irradiation in H2-loaded SMF-28e optical fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (OSA, 2012), BM4D.4.
  18. F. Dürr, “Laser-induced stress changes in optical fibers,” PhD thesis No. 3314 (Swiss Federal Institute of Technology, Lausanne, 2005).
  19. T. Rose, D. Spriegel, and J. R. Kropp, “Fast photoelastic stress determination: application to monomode fibres and splices,” Meas. Sci. Technol.4(3), 431–434 (1993).
    [CrossRef]
  20. Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
    [CrossRef]
  21. F. Dürr, H. G. Limberger, R. P. Salathé, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OSA, 2006), OWA2.
  22. E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, N. H. Ky, H. G. Limberger, and R. P. Salathé, “UV-irradiation-induced structural transformation of germanoscilicate glass fiber,” Opt. Lett.22(23), 1754–1756 (1997).
    [CrossRef] [PubMed]
  23. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys.30(5), 779–788 (1959).
    [CrossRef]

2011 (1)

2010 (1)

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
[CrossRef]

2009 (1)

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

2007 (1)

2006 (1)

2004 (2)

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

2003 (1)

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
[CrossRef]

2002 (1)

2001 (1)

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001).
[CrossRef]

1999 (2)

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4–5.4-eV ultraviolet light,” Opt. Lett.24(11), 729–731 (1999).
[CrossRef] [PubMed]

Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999).
[CrossRef]

1997 (1)

1996 (1)

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

1995 (1)

1993 (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

T. Rose, D. Spriegel, and J. R. Kropp, “Fast photoelastic stress determination: application to monomode fibres and splices,” Meas. Sci. Technol.4(3), 431–434 (1993).
[CrossRef]

1990 (1)

1979 (1)

J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys.50(5), 3702–3706 (1979).
[CrossRef]

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys.30(5), 779–788 (1959).
[CrossRef]

Allan, D. C.

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001).
[CrossRef]

Aslund, M.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Ban, C.

Bandyopadhyay, S.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

Biswas, P.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

Borrelli, N. F.

C. M. Smith and N. F. Borrelli, “Behavior of 157 nm excimer-laser-induced refractive index changes in silica,” J. Opt. Soc. Am. B23(9), 1815–1821 (2006).
[CrossRef]

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001).
[CrossRef]

Canning, J.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett.20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

Dianov, E.

Dianov, E. M.

Douay, M.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

Dürr, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

Erdogan, T.

Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999).
[CrossRef]

Feinberg, J.

Fenton, J.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

Fertein, E.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

Fokine, M.

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett.20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

Grubsky, V.

Han, S.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

Hand, D. P.

Heaney, A. D.

Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999).
[CrossRef]

Hindle, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

Kaiser, S.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
[CrossRef]

Kim, B.-H.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

Kim, C.-S.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

Kim, D. Y.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

Koltashev, V. V.

Kropp, J. R.

T. Rose, D. Spriegel, and J. R. Kropp, “Fast photoelastic stress determination: application to monomode fibres and splices,” Meas. Sci. Technol.4(3), 431–434 (1993).
[CrossRef]

Kühn, B.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
[CrossRef]

Ky, N. H.

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Leuenberger, B.

Limberger, H. G.

C. Ban, H. G. Limberger, V. Mashinsky, and E. Dianov, “Photosensitivity and stress changes of Ge-free Bi-Al doped silica optical fibers under ArF excimer laser irradiation,” Opt. Express19(27), 26859–26865 (2011).
[CrossRef] [PubMed]

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
[CrossRef]

H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express15(9), 5610–5615 (2007).
[CrossRef] [PubMed]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, N. H. Ky, H. G. Limberger, and R. P. Salathé, “UV-irradiation-induced structural transformation of germanoscilicate glass fiber,” Opt. Lett.22(23), 1754–1756 (1997).
[CrossRef] [PubMed]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett.20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

Mashinsky, V.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Nikogosyan, D. N.

Paek, U.-C.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

Park, Y.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

Plotnichenko, V. G.

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys.30(5), 779–788 (1959).
[CrossRef]

Price, J. J.

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001).
[CrossRef]

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys.30(5), 779–788 (1959).
[CrossRef]

Przygodzki, C.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

Pyrkov, Y. N.

Radosevic, I.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
[CrossRef]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Rose, T.

T. Rose, D. Spriegel, and J. R. Kropp, “Fast photoelastic stress determination: application to monomode fibres and splices,” Meas. Sci. Technol.4(3), 431–434 (1993).
[CrossRef]

Russell, P. S. J.

Salathé, R. P.

Shelby, J. E.

J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys.50(5), 3702–3706 (1979).
[CrossRef]

Slattery, S. A.

Smith, C. M.

C. M. Smith and N. F. Borrelli, “Behavior of 157 nm excimer-laser-induced refractive index changes in silica,” J. Opt. Soc. Am. B23(9), 1815–1821 (2006).
[CrossRef]

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001).
[CrossRef]

Spriegel, D.

T. Rose, D. Spriegel, and J. R. Kropp, “Fast photoelastic stress determination: application to monomode fibres and splices,” Meas. Sci. Technol.4(3), 431–434 (1993).
[CrossRef]

Stamminger, M.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
[CrossRef]

Starodubov, D. S.

Stebbins, J. F.

Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999).
[CrossRef]

Stevenson, M.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

Uebbing, B.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
[CrossRef]

Violakis, G.

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
[CrossRef]

Zeng, Q.

Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004).
[CrossRef]

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett.78(17), 2452–2454 (2001).
[CrossRef]

Electron. Lett. (2)

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

J. Appl. Phys. (2)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys.30(5), 779–788 (1959).
[CrossRef]

J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys.50(5), 3702–3706 (1979).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public. (1)

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4, 09052 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, “Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation,” J. Non-Cryst. Solids330(1–3), 23–32 (2003).
[CrossRef]

Q. Zeng, J. F. Stebbins, A. D. Heaney, and T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment,” J. Non-Cryst. Solids258(1–3), 78–91 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

T. Rose, D. Spriegel, and J. R. Kropp, “Fast photoelastic stress determination: application to monomode fibres and splices,” Meas. Sci. Technol.4(3), 431–434 (1993).
[CrossRef]

Opt. Commun. (1)

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun.242(4–6), 431–436 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (3)

F. Dürr, H. G. Limberger, R. P. Salathé, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OSA, 2006), OWA2.

G. Violakis, N. Aggarwal, and H. G. Limberger, “Stress changes induced by cw-244-nm Ar+ irradiation in H2-loaded SMF-28e optical fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (OSA, 2012), BM4D.4.

F. Dürr, “Laser-induced stress changes in optical fibers,” PhD thesis No. 3314 (Swiss Federal Institute of Technology, Lausanne, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics