Abstract

Writing and thermal annealing of fiber Bragg gratings (FBGs) in an optical fiber containing 75 mol.% GeO2 in the core have been studied by analyzing the first three diffraction orders of the FBGs. Double oscillations of the grating reflectivity has been observed during the FBG formation in an H2-loaded fiber, and the corresponding three grating types revealed have been labeled as type I(H2), type IIa(H2)-, and type IIa(H2)+. The results obtained have shown that the negative index change related to the type IIa photosensitivity cannot be described by the accumulated UV-dose only, but strongly depends on the UV-radiation intensity for both pristine and H2-loaded fibers, unlike the type I and type I(H2) photosensitivities.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
    [CrossRef]
  2. M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
    [CrossRef]
  3. B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).
  4. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt.40(16), 2632–2642 (2001).
    [CrossRef] [PubMed]
  5. P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
    [CrossRef]
  6. N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
    [CrossRef]
  7. S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B–Ge co-doped fiber,” Opt. Commun.262(1), 68–76 (2006).
    [CrossRef]
  8. X. Shu, D. Zhao, L. Zhang, and I. Bennion, “Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements,” Appl. Opt.43(10), 2006–2012 (2004).
    [CrossRef] [PubMed]
  9. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008).
    [CrossRef]
  10. H. Poignant, J. F. Bayon, E. Delevaque, M. Monerie, J. L. Mellot, D. Grot, P. Niay, P. Bemage, and M. Douay, “Influence of H2 loading on the kinetics of Type IIA fibre Bragg grating photoinscription,” in IEE Colloquium on Optical Fibre Gratings (London, UK, 1997), pp. 2/1-2/7.
  11. O. I. Medvedkov, S. A. Vasiliev, P. I. Gnusin, and E. M. Dianov, “Three Bragg grating types in hydrogen-loaded heavily germanium- doped fibers,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (CD) (Optical Society of America, 2012), paper BM4D.2.
  12. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Yu. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004).
    [CrossRef] [PubMed]
  13. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B25(5), 877–883 (2008).
    [CrossRef]
  14. S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
    [CrossRef]
  15. W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
    [CrossRef]
  16. J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
    [CrossRef]
  17. A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
    [CrossRef]
  18. R. Kashyap, Fiber Bragg Gratings, P.L. Kelly, I. Kaminow, and G. Agrawal, eds. (Academic Press, 1999).
  19. W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
    [CrossRef]
  20. L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett.21(24), 2032–2034 (1996).
    [CrossRef] [PubMed]
  21. Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Abnormal spectral evolution of fiber Bragg gratings in hydrogenated fibers,” Opt. Lett.27(8), 586–588 (2002).
    [CrossRef] [PubMed]
  22. A. G. Simpson, L. Zhang, K. Zhou, and I. Bennion, “Abnormal photosensitivity effects and the formation of type IA FBGs,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-32.
  23. K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
    [CrossRef]
  24. S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, “Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers,” Opt. Lett.31(1), 11–13 (2006).
    [CrossRef] [PubMed]
  25. H. R. Sørensen, H. J. Deyerl, and M. Kristensen, “Thermal stability of UV-written gratings in low- and high Ge content fibers,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-30.
  26. C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
    [CrossRef]
  27. K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solids201(3), 177–198 (1996).
    [CrossRef]
  28. B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
    [CrossRef]
  29. P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Temperature-resolved spectroscopy of UV-induced absorption in H2-loaded germanosilicate fiber,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (CD) (Optical Society of America, 2012), paper BM4D.3.
  30. M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
    [CrossRef]
  31. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4 5.4-eV ultraviolet light,” Opt. Lett.24(11), 729–731 (1999).
    [CrossRef] [PubMed]
  32. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express19(2), 1198–1206 (2011).
    [CrossRef] [PubMed]
  33. S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-31.

2011

2010

P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

2008

2006

S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, “Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers,” Opt. Lett.31(1), 11–13 (2006).
[CrossRef] [PubMed]

M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
[CrossRef]

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
[CrossRef]

S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B–Ge co-doped fiber,” Opt. Commun.262(1), 68–76 (2006).
[CrossRef]

2005

S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
[CrossRef]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
[CrossRef]

2004

2003

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
[CrossRef]

2002

2001

2000

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

1999

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4 5.4-eV ultraviolet light,” Opt. Lett.24(11), 729–731 (1999).
[CrossRef] [PubMed]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

1996

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solids201(3), 177–198 (1996).
[CrossRef]

L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett.21(24), 2032–2034 (1996).
[CrossRef] [PubMed]

1995

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

1994

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

1993

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

1960

W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
[CrossRef]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Bandyopadhyay, S.

Bayon, J. F.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Bennion, I.

Bernage, P.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Birkin, D.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
[CrossRef]

Biswas, P.

Bozhkov, A. S.

A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
[CrossRef]

S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
[CrossRef]

Bufetov, I. A.

Canning, J.

Cochet, F.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
[CrossRef]

Cordier, P.

M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
[CrossRef]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

Dalle, C.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

Dasgupta, K.

Davis, K. M.

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solids201(3), 177–198 (1996).
[CrossRef]

Depecker, C.

M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
[CrossRef]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

Dianov, E. M.

Dong, L.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
[CrossRef]

L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett.21(24), 2032–2034 (1996).
[CrossRef] [PubMed]

Douay, M.

M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
[CrossRef]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt.40(16), 2632–2642 (2001).
[CrossRef] [PubMed]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Dvoyrin, V. V.

Ellingham, T.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
[CrossRef]

Feinberg, J.

Georges, T.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Gnusin, P. I.

P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

Greene, B. I.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Grekov, M. V.

A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
[CrossRef]

Grobnic, D.

Grubsky, V.

Guenot, P.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

Guryanov, A. N.

Hidayat, A.

Kalli, K.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
[CrossRef]

Kherbouche, F.

Khopin, V. F.

Korolev, I. G.

S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
[CrossRef]

A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
[CrossRef]

Kosinski, S. G.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Kristensen, M.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

Krol, D. M.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Kurkov, A. S.

S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
[CrossRef]

Ky, N. H.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
[CrossRef]

Lancry, M.

M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
[CrossRef]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

Lemaire, P. J.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Limberger, H. G.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
[CrossRef]

Liu, W. F.

Liu, Y.

Mashinsky, V. M.

Medvedkov, O. I.

P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, “Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers,” Opt. Lett.31(1), 11–13 (2006).
[CrossRef] [PubMed]

A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
[CrossRef]

S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
[CrossRef]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Yu. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004).
[CrossRef] [PubMed]

Mihailov, S. J.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Monerie, M.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Neustruev, V. B.

Niay, P.

M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
[CrossRef]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt.40(16), 2632–2642 (2001).
[CrossRef] [PubMed]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Pal, S.

S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B–Ge co-doped fiber,” Opt. Commun.262(1), 68–76 (2006).
[CrossRef]

Pedersen, J. E.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

Plotnichenko, V. G.

Poumellec, B.

M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006).
[CrossRef]

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt.40(16), 2632–2642 (2001).
[CrossRef] [PubMed]

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Primak, W.

W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
[CrossRef]

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Reekie, L.

Riant, I.

A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt.40(16), 2632–2642 (2001).
[CrossRef] [PubMed]

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

Rybaltovsky, A. O.

Saeta, P. N.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Salathe, R. P.

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
[CrossRef]

Salgansky, M. Yu.

Sansonetti, P.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

Shu, X.

Shubin, A. V.

Simpson, A. G.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
[CrossRef]

Smelser, C. W.

Starodubov, D. S.

Stevenson, M.

Tomozawa, M.

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solids201(3), 177–198 (1996).
[CrossRef]

Vasiliev, S. A.

P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, “Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers,” Opt. Lett.31(1), 11–13 (2006).
[CrossRef] [PubMed]

A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
[CrossRef]

S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
[CrossRef]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Yu. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004).
[CrossRef] [PubMed]

Wang, Q.

Williams, J. A. R.

Xie, W. X.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

Zhang, L.

Zhao, D.

Zhou, K.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
[CrossRef]

Appl. Opt.

Electron. Lett.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Instrum. Exp. Tech.

A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005).
[CrossRef]

J. Appl. Phys.

W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
[CrossRef]

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005).
[CrossRef]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999).
[CrossRef]

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solids201(3), 177–198 (1996).
[CrossRef]

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008).
[CrossRef]

Meas. Sci. Technol.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006).
[CrossRef]

Opt. Commun.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003).
[CrossRef]

S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B–Ge co-doped fiber,” Opt. Commun.262(1), 68–76 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).

Quantum Electron.

P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005).
[CrossRef]

Other

H. Poignant, J. F. Bayon, E. Delevaque, M. Monerie, J. L. Mellot, D. Grot, P. Niay, P. Bemage, and M. Douay, “Influence of H2 loading on the kinetics of Type IIA fibre Bragg grating photoinscription,” in IEE Colloquium on Optical Fibre Gratings (London, UK, 1997), pp. 2/1-2/7.

O. I. Medvedkov, S. A. Vasiliev, P. I. Gnusin, and E. M. Dianov, “Three Bragg grating types in hydrogen-loaded heavily germanium- doped fibers,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (CD) (Optical Society of America, 2012), paper BM4D.2.

H. R. Sørensen, H. J. Deyerl, and M. Kristensen, “Thermal stability of UV-written gratings in low- and high Ge content fibers,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-30.

P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Temperature-resolved spectroscopy of UV-induced absorption in H2-loaded germanosilicate fiber,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (CD) (Optical Society of America, 2012), paper BM4D.3.

A. G. Simpson, L. Zhang, K. Zhou, and I. Bennion, “Abnormal photosensitivity effects and the formation of type IA FBGs,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-32.

S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-31.

R. Kashyap, Fiber Bragg Gratings, P.L. Kelly, I. Kaminow, and G. Agrawal, eds. (Academic Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Dose dependences of Am and Δnavr, measured in pristine fiber for first-order and high-order FBGs during the writing process. The inset depicts the FBG pitch profiles calculated for different UV doses. (b) Dose dependences of induced index for different coordinates along the fiber.

Fig. 2
Fig. 2

(a) Dose dependences of Am and Δnavr, measured in an H2-loaded fiber for the first- and high-order gratings during their writing process. The inset depicts the FBG pitch profiles calculated for different UV doses. (b) Dose dependences of the induced index for different coordinates.

Fig. 3
Fig. 3

Temperature dependences of A1 (a) and dA1/dT (b) obtained for FBGs written with different UV-doses in H2-loaded fiber (1 - 5 are the FBG numbers).

Fig. 4
Fig. 4

Temperature dependences of the average induced index (a) and its temperature derivative (b) for the FBGs 1-5.

Fig. 5
Fig. 5

Temperature dependences of the Am coefficients for second- and third-order FBGs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I( z )= I 0 [ 1+Vcos( 2πz/Λ ) ],
Δ n ind ( z )= m=0 Δ n m ( z )=Δ n avr + m=1 A m cos ( 2πm Λ z ),
Δ n avr =( n eff /η )( Δ λ BG / λ BG 0 ),

Metrics